1.Institute of Applied Physics and Computational Mathematics, Beijing 100094, China 2.Graduate School of China Academy of Engineering Physics, Beijing 100088, China
Fund Project:Project supported by the Science Challenge Project, China (Grant No. TZ2018001) and the National Nature Science Foundation of China (Grant No.11702031)
Received Date:18 September 2019
Accepted Date:14 November 2019
Published Online:05 February 2020
Abstract:Stacking fault tetrahedron (SFT) is a common type of three-dimensional vacancy clustered defect in irradiated FCC metals and alloys, which has a great influence on the mechanical properties of the materials. Previous researches mostly concentrated on the effect of SFT on the mechanical response of material under quasi-static or constant strain rate loading condition, while very few studies focused on its influence on mechanical properties under the shock loading condition. Spallation is a typical failure mode of ductile metal material under shock loading, and the initial defects in the material have a great influence on the spallation behavior. In this study, molecular dynamics simulation is carried out to investigate the influence of SFT on spallation behavior of irradiated copper single crystal under different shock intensities. Copper single crystal with a perfect structural model is also investigated under the same simulation condition for comparison. The model is divided into two parts: the flyer and the target. The shock wave is generated by moving the flyer at a velocity in a range of 1.0–2.5 km/s along the [111] crystallographic orientation to achieve the desired shock-state particle velocity Up in a range of 0.5–1.25 km/s. The time evolution of pressure, free surface velocity and corresponding microstructure, are analyzed in detail to illuminate the spallation behavior of the Cu with SFT. It is revealed that the SFT collapses during shock compression and induces the generation of dislocations and stacking faults in the material. Subsequently, spallation happens when the voids nucleate and grow in the region of dislocations and stacking faults. Moreover, the materials show different spallation behaviors at different shock intensities. When Up ≤ 1.0 km/s, only elastic deformation occurs in perfect single crystal copper under shock compression, but in the copper with SFT, local defects appear and plastic deformation occurs due to the collapse of SFT under shock compression. The influence of SFT on spallation is most pronounced at a medium shock intensity. When Up = 0.75 km/s, the local defects caused by the collapse of SFT provide a wider nucleation area for the voids and promote the heterogeneous nucleation of the voids, resulting in the decreasing of the spall strength. The void nucleation of single crystal copper with SFT is found to be much later than the perfect one and the rate of spall damage evolution also decreases due to energy dissipation during SFT’s collapse and plastic deformation. When Up increases to 1.25 km/s, shock compression induces many defected atoms in both samples, so the SFT has little influence on the spall strength and spall damage of the materials. Keywords:spallation/ stacking fault tetrahedron/ shock/ molecular dynamics
全文HTML
--> --> --> -->
3.1.层裂强度
层裂强度是表示材料抵抗断裂破坏能力的重要参数, 在分子动力学模拟中, 通常用样品层裂过程中的最大拉伸应力(–σ33,max)作为层裂强度[9]. 不同冲击速度下含SFT铜与完美单晶铜的层裂强度如图3所示. 作为对比, 图3还给出了Luo等[36]针对完美单晶铜的分子动力学模拟所得部分结果. 图 3 不同Up对应的层裂强度分布图 Figure3. Relationship between particle velocity Up and spall strength of perfect Cu and Cu with SFT.
为了进一步深入分析层裂过程中材料内部微结构的演化情况, 采用CNA[34]和DXA[35]来分析微结构的演化. 图4给出了Up分别为0.5和0.75 km/s时, SFT在压缩过程中的演化形态图及相应的位错演化图. SFT在冲击波作用下会发生坍塌, 0.5 km/s时(见图4(a)), 当冲击波扫过SFT时, SFT从顶部开始坍塌(2.67 ps), 形成Shockley不完全位错, 随着Shockley不完全位错在($ {\bar{\rm 1}}$ 1 1), (1 $ {\bar{\rm 1}}$ 1), (1 1 $ {\bar{\rm 1}}$)滑移面上滑移, 三个面上的堆垛层错逐渐湮灭, 同时压杆位错消失. 最终Shockley不完全位错与SFT底部(1 1 1)面上的压杆位错作用(2.83 ps), 形成Frank位错, 在(1 1 1)面上留下一个由Frank位错环包围的三角形层错面(2.96 ps). 0.75 km/s时(见图4(b)), 由于冲击压力较大, SFT的坍塌在不到0.2 ps的时间内快速完成, 结构破坏较快, 其结构演化无法像0.5 km/s时平稳规则, 但坍塌完成后同样形成了一个三角形层错面(2.49 ps). SFT坍塌后在Frank位错环的三个顶点附近开始发射位错, 并随着Shockley不完全位错的滑移在{1 1 1}面上形成堆垛层错(图4(a), 3.17 ps), 冲击速度越大, 压缩过程中形成的位错、堆垛层错等缺陷就越多, 过程中所耗散的能量也越大. 在更高的冲击速度下, 如Up为1.25 km/s时, 样品在冲击过程就会产生位错等缺陷, SFT与这些缺陷相互作用, 其演化过程就更加复杂, 并且, 由于强冲击下材料产生大量缺陷, SFT和它引发的位错、层错等不再是影响材料层裂行为的主要因素, 因此这里不再具体讨论更高速度下SFT的演化过程. 图 4 压缩过程中SFT的演化形态图及对应的位错演化图(其中, 玫红色线是压杆位错, 绿色线是Shockley不完全位错, 浅蓝色线是Frank不完全位错, 红色线是其他位错) (a) Up = 0.5 km/s; (b) Up = 0.75 km/s Figure4. Snapshots of SFT configuration and dislocation evolution at different deformation stages during shock compression: (a) Up = 0.5 km/s; (b) Up = 0.75 km/s. The rose red line represents the stair-rod dislocation, the green line represents the Shockley partial dislocation, the light blue line represents the Frank partial dislocation, and the red line is the undefined dislocation.
图5给出了Up分别为0.75和1.25 km/s时材料在压缩和拉伸过程中内部微结构的演化规律, 其中, 绿色、红色和蓝色原子分别表示面心立方、堆垛层错和其他缺陷原子. 速度为0.75 km/s的情况下(图5(a)), 对于完美单晶铜, 冲击波在4.6 ps时到达右侧自由表面, 在冲击压缩过程中材料只发生弹性变形, 材料内部没有形成位错、层错等缺陷. 随后, 从两端自由面反射回的稀疏波在靶板中部相遇, 形成拉伸脉冲, 在拉伸应力的作用下, 靶板中部开始出现孔洞形核(8.7 ps), 随后孔洞成长、合并, 最终导致材料断裂(16 ps). 对于含SFT铜, SFT的存在降低了材料的屈服强度, 材料在压缩过程中便发生塑性变形, SFT坍塌并进一步形成位错、堆垛层错等缺陷(4.6 ps); 这些缺陷结构随后在拉伸应力作用下进一步演化, 形成了较宽的孔洞形核区(8.7 ps). 观察拉伸过程中层裂图像可知, 完美单晶铜在16 ps时已接近完全断裂状态, 断裂面较光滑平整, 而含SFT铜还未完全断裂, 这与含SFT铜的层裂区较宽、孔洞演化较慢有关. 当速度达到1.25 km/s时(图5(b)), 两种样品的压缩拉伸微观图像不再有明显区别, 这与在此冲击速度下两种样品层裂强度相同的结论一致. 较大的冲击压力使得材料在冲击压缩阶段就发生塑性变形, 产生大量缺陷原子(4.2 ps), 与强冲击产生的缺陷相比, 由SFT引起的缺陷不再具有显著影响; 在随后的拉伸过程中, 这些缺陷为孔洞提供了形核点, 能够看出, 此时在两种样品内部都形成了较宽的孔洞形核区(11 ps), SFT的存在对材料层裂损伤演化的影响几乎可以忽略不计. 图 5 不同冲击速度下单晶铜在压缩和拉伸过程中的微结构演化图 (a) Up = 0.75 km/s; (b) Up = 1.25 km/s Figure5. Atomic configuration in Cu crystal during shock compression and tension at different impact velocity: (a) Up = 0.75 km/s; (b) Up = 1.25 km/s.