1.Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun 130022, China 2.Changchun China Optical Science and Technology Museum, Changchun 130117, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61505013), the Postdoctoral Science Foundation of China (Grant No. 2016 M591466), the Key Science and Technology Program of Jilin Science and Technology Department, China (Grant No. 20170204046GX), and the Young and Middle-aged Science and Technology Innovation Leader and Team of Jilin Science and Technology Department , China (Grant No. 20190101004JH)
Received Date:30 May 2019
Accepted Date:03 September 2019
Available Online:27 November 2019
Published Online:01 December 2019
Abstract:In a multi-optical parametric oscillator by pulse pumping, energy conversion process for 1.57 μm and 3.84 μm parametric light can be expressed by time-dependent wave equations. The split-step integration method is used to solve the equations. By analyzing the simulation results of the output waveform for the multi-optical parametric amplifier, it is confirmed that back conversion and mode competition are the important factors affecting the multi-optical parametric oscillation. The 1.57 μm and 3.84 μm parametric light in an external cavity multi-optical parametric oscillator are simulated under different output mirror transmittances, crystal working lengths and cavity lengths. The conversion efficiency of 1.57 μm and 3.84 μm increase with the output mirror transmittance increasing, which means that the conversion efficiency can be adjusted by changing the parametric light transmittance of the output mirror. There exist an optimal crystal working length and a cavity length in the external cavity multi-optical parametric oscillator. The experiment on external cavity multi-optical parametric oscillator is carried out. The conversion efficiency of 1.57 μm and 3.84 μm parametric light are consistent with the theoretical values. The energy conversion process in the multi-optical parametric oscillator can be simulated by this method, which could be used for optimizing the multi-optical parametric oscillator and increasing the parametric conversion efficiency. Keywords:multi-optical parametric oscillator/ split-step integration methods/ energy conversion/ MgO:APLN
${P_{\rm{p}}}\left( z \right) = {\varepsilon _0}{d_1}{E_{{\rm{s1}}}}\left( z \right){E_{{\rm{i1}}}}\left( z \right) + {\varepsilon _0}{d_2}{E_{{\rm{s2}}}}\left( z \right){E_{{\rm{i2}}}}\left( z \right),$
${P_{{\rm{s}}n}}\left( z \right) = {\varepsilon _0}{d_n}{E_{\rm{p}}}\left( z \right){E_{{\rm{i}}n}}\left( z \right),$
${P_{{\rm{i}}n}}\left( z \right) = {\varepsilon _0}{d_n}{E_{\rm{p}}}\left( z \right){E_{{\rm{s}}n}}\left( z \right),$
通过图5—7可知, 抽运功率在2.6 W附近时, 1.57和3.84 μm参量光转换效率出现明显凹陷, 这是因为抽运光功率增加致使参量振荡增益变大, 由于谐振腔的耦合作用导致抽运光在正反两次通过晶体过程中被完全消耗, 发生逆转换现象, 降低了转换效率, 且晶体长度或谐振腔长度变短时, 又引发模式竞争现象, 导致两个参量光转换效率出现不同步的起伏. 高抽运功率下, 不同透过率间转换效率随功率出现不规律的起伏, 是因为透过率为20%—60%时, 谐振腔内积累大量参量光, 导致逆转换现象, 降低转换效率, 而透过率为80%时, 大部分参量光由腔镜射出, 减少了腔内参量光积累, 抑制了逆转换现象的发生. 5.实验结果基于仿真模拟结果, 搭建了基于MgO:APLN的外腔MOPO实验装置. 880 nm抽运Nd:YVO4高重复频率声光调Q激光器作为1064 nm脉冲抽运源, 70 kHz重复频率下最高输出平均功率为30.2 W. MgO:APLN晶体尺寸为50 mm × 6 mm × 3 mm, 多光参量振荡谐振腔长度为200 mm. 输入镜选择腔镜M3的膜系, 输出镜选择腔镜M4-1和M4-2膜系. 不同输出透过率下外腔MOPO的输出功率及转换效率如图8所示. 其中, 模拟值为第4节仿真结果. 对比两组实验数据, 腔镜M4-1下1.57 μm和3.84 μm参量光转换效率比腔镜M4-2高, 且腔镜M4-2的参量光转换效率存在由逆转换现象引起的拐点. 1064 nm抽运光平均功率为21 W时, 包含腔镜M3和M4-1的外腔MOPO在1.57 μm和3.84 μm的最大输出功率分别为 4.6 W和1.6 W, 对应转换效率为22.2%和7.8%. 进一步, 腔镜选择M3和M4-1, 测量不同谐振腔长度下多光参量振荡的输出功率和转换效率(图9). 由图9(a)可知, 腔长为160 mm, 抽运光功率大于16 W时, 参量光转换效率持续下降. 由图9(b)可知, 腔长为180 mm, 参量光转换效率随抽运光功率增加而增长. 综合图8和图9, 参量光1.57 μm和3.84 μm转换效率的实验值与模拟值具有相同的变化规律, 表明参量光转换效率的实验值与理论值相匹配, 证明此模型能精准地反演MOPO的能量转换过程. 图 8 不同输出透过率下外腔MOPO输出功率及转换效率 (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%) Figure8. Output power and conversion efficiency of external cavity MOPO with different output transmittance: (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%).
图 9 不同谐振腔长度下外腔MOPO输出功率及转换效率 (a)腔长160 mm; (b)腔长180 mm Figure9. Output power and conversion efficiency of external cavity MOPO with different cavity length: (a) Cavity length of 160 mm; (b) cavity length of 180 mm.