1.College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043, China 2.Institute of Condensed Matter Physics, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
Fund Project:Supported by the National Natural Science Foundation of China (Grant No. 51902085) and the Nature Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2019MS01011)
Received Date:20 June 2019
Accepted Date:04 October 2019
Available Online:27 November 2019
Published Online:01 December 2019
Abstract:Selecting the double-parameter asymmetric Gaussian (AG) potential to describe the confinement effect of electrons in a quantum dot, the ground state and the first excited state energy eigenvalues and eigenfunctions of the three-body interaction system that are composed of the electrons, the impurity and the longitudinal optical phonon are derived by using the Lee-Low-Pines unitary transformation and the Pekar-type variational method, and the two-level structure required for a qubit is constructed. The influences of material parameters such as the dispersion coefficient, dielectric constant (DC) ratio, and electron-phonon coupling (EPC) constant on the probability density and the oscillation period of electron in the AG potential qubit are investigated. Based on the Fermi gold rule and the even-order approximation, the effects of the DC ratio, the dispersion coefficient and the EPC constant on the qubit decoherence are studied. And then the influences of the dispersion coefficient, the DC ratio and the EPC constant on the phase rotation manipulation of the qubit sphere are discussed. Numerical results show that the dispersion coefficient, the DC ratio and EPC constant of the medium have both advantages and disadvantages for the formation and information storage of qubits. The probability density of electrons in quantum dot qubits decreases with DC ratio increasing and exhibits significant oscillations as the well width of the AG potential decreases; the oscillation period of the qubit decreases with the well depth of the AG potential or the DC ratio increasing; the decoherence time increases with DC ratio or dispersion coefficient increasing; the phase rotation quality factor increases with DC ratio or dispersion coefficient increasing. Using the double-parameter AG potential to describe the confinement of electrons in quantum dot will better reflect the quantization properties of qubit. Increasing the dispersion coefficient or the DC ratio of the material is beneficial to not only the phase rotation manipulation of the qubit sphere, but also improving the coherence of the quantum dot qubit. The results of this paper can be used for reference in the experimental work on the constructing and manipulating of the quantum dot qubits. Keywords:qubit/ asymmetric Gaussian potential/ probability density/ oscillation period/ decoherence time/ phase rotation quality factor
3.结果与讨论图1—图10给出了非对称高斯势量子点量子比特中电子的概率密度w、振动周期T、退相干时间$\tau $和自由旋转品质因子Q的数据曲线, 为了使这些数值曲线呈现的各物理量的变化规律具有普遍性, 图中分别以$\omega _{\rm LO}^{ - 1}$, $\hbar {\omega _{{\rm{LO}}}}$和${r_{\rm{p}}} = \sqrt {\hbar /(2{m_{\rm{b}}}{\omega _{{\rm{LO}}}})} $作为时间、能量和长度的单位. 图 1 能隙$\Delta E$在非对称高斯势不同阱深${V_0}$下随阱宽L的变化 Figure1. Energy gap $\Delta E$ versus the well width L under different the well depth ${V_0}$ of the asymmetric Gaussian (AG) potential.
图 10 相位品质因子Q在不同色散系数$\varsigma $下随高斯势阱宽L的变化 Figure10. Quality factors of phase rotation Q as a function of the well width L of the AG potential at different dispersion coefficient $\varsigma $.
图1表示能隙$\Delta E$在高斯势不同阱深${V_0}$下随其阱宽L的变化. 由图1可以看出, 各$\Delta E\text-L$曲线呈现两头低、中间高(最大值出现在$L \approx 0.3{r_{\rm{p}}}$处)、左右非对称的显著特点, 属于一种非对称“高斯分布”, 这与本文采用非对称高斯势${V_{\rm{G}}}(z)$描写电子受限有关. 由图1还可以看出, 在给定L下, $\Delta E$随${V_0}$的增加而增大, 这是因为$\left| {{V_{\rm{G}}}(z)} \right|$随${V_0}$增加而增大所致. 图2描绘了能隙$\Delta E$在不同介电常数比$\eta $下随高斯势阱宽L的变化. 由图2可以看出, $\Delta E$随$\eta $的增加而增大. 这是因为在含氢化杂质的晶体或纳米结构中电子被库仑势(${V_{\rm{C}}} < 0$)束缚于氢化杂质中, 且$\eta $越大, 杂质-电子库仑势${V_{\rm{C}}} \propto - {(1 - \eta )^{ - 1}}$越强. 图 2 能隙$\Delta E$在不同介电常数比$\eta $下随高斯势阱宽L的变化 Figure2. Energy gap $\Delta E$ versus the well width L of the AG potential under different the dielectric constant (DC) ratio $\eta $
图3为概率密度w在高斯势不同阱深${V_0}$下随其阱宽L的变化. 由图3可以看出, w随L的变化规律在L的不同区域差异较大: 当$L > 2.0{r_{\rm{p}}}$时, w随L的增加而增大. 这是因为随着L的增加, 电子的纵向受限减弱, 使得体系的能量E随高斯阱宽L的增加而减小, 而根据能量最低原理, 电子优先处于较低的能态; 在L取一定时, w随阱深${V_0}$的增加而减小, 这是因为随着${V_0}$的增加, 电子的自陷加大, 致使体系的能量E随${V_0}$的增加而增大所致. 当$L < 2.0{r_{\rm{p}}}$时, w随L的减小而明显振荡变化, 这一结果与量子力学理论相吻合, 因为电子受限越强, 电子态的波动性越凸显. 图 3 概率密度w在高斯势不同阱深${V_0}$下随阱宽L的变化 Figure3. Probability density w versus the well width L under different the well depth ${V_0}$ of the AG potential.
图4描绘了概率密度w在不同介电常数比$\eta $下随高斯势不同阱宽L的变化. 由图4可以看出, 在L一定时, w随$\eta $的增加而减小, 这是因为库仑能$2\alpha /(1 - \eta )$随$\eta $的增加而增大, 进而推高体系的能量, 促使电子优先处于较低的能态. 图 4 概率密度w在不同介电常数比$\eta $下随高斯势不同阱宽L的变化 Figure4. Probability density w as a function of the well width L of the AG potential at different the DC ratio $\eta $.
图5揭示了振动周期T在高斯势不同阱深${V_0}$下随其阱宽L的变化. 由图5可以看出, T-L曲线呈现两头高、中间低(最小值出现在$L \approx 0.3{r_{\rm{p}}}$处)、左右非对称的显著特点. 这与图1恰好相反, 这是由于$T \propto 1/\Delta E$. 这一最小值对于量子比特信息存储是不利的, 因此选择量子点的厚度应远大于$L \approx 0.3{r_{\rm{p}}}$. 在L一定时, T随阱深${V_0}$的增加而减小, 这是因为$\Delta E$随着${V_0}$的增加而增大. 这意味着深阱量子点也不利于量子比特信息的存储. 图 5 振动周期T在高斯势不同阱深${V_0}$下随其阱宽L的变化 Figure5. Variations of oscillation period T as a function of the well width L at different well width L of the AG potential.
图6 描写了振动周期T在不同介电常数比$\eta $下随高斯势阱宽L的变化. 由图6可以看出, 当L一定时, T随$\eta $的增加而减小, 这是因为$\Delta E$随$\eta $的增加而增大. 这表明量子点中杂质的存在, 使得电子叠加态的振荡周期变小, 而振荡周期的变小, 意味着量子位存活时间变小. 这对于量子点量子比特的信息存储是不利的. 图 6 振动周期T在不同介电常数比$\eta $下随高斯势阱宽L的变化 Figure6. Variations of oscillation period T as a function of the well width L of the AG potential at different the DC ratio $\eta $
图7描绘了声子自发辐射率${\tau ^{ - 1}}$在不同介电常数比$\eta $下随高斯势不同阱宽L的变化. 由图7可以看出, ${\tau ^{ - 1}}\text-L$曲线呈现两头低、中间高、左右非对称形状. 由(12)式不难看出这是由于$\Delta E\text-L$曲线的非对称高斯分布传导至${\tau ^{ - 1}}\text-L$曲线所致. 自发辐射率${\tau ^{ - 1}}$的最大值出现在$L \approx 0.7{r_{\rm{p}}}$处, 换言之, 在$L \approx 0.7{r_{\rm{p}}}$处退相干时间$\tau $取最小值, 这对量子比特的信息存储是最不利的. 由图7还可以看出, ${\tau ^{ - 1}}$随$\eta $的增加而减小, 这意味着退相干时间$\tau $随$\eta $的增加而增大. 这表明量子点中杂质库仑势的存在对于量子点量子比特的信息存储是有利的. 图 7 自发辐射率${\tau ^{ - 1}}$在不同介电常数比$\eta $下随高斯势阱宽L的变化 Figure7. Spontaneous emission rate ${\tau ^{ - 1}}$ as a function of the well width L of the AG potential at different the DC ratio $\eta $
图8表示了自发辐射率${\tau ^{ - 1}}$在不同色散系数$\varsigma $下随高斯势阱宽L的变化. 由图8可以看出, ${\tau ^{ - 1}}$随$\varsigma $的增加而减小, 这意味着退相干时间$\tau $随$\varsigma $的增加而增大. 色散系数是由材料本身性质决定, 因此要想获得较长的退相干时间应选择色散系数较大的材料来制备量子点量子比特. 图 8 自发辐射率${\tau ^{ - 1}}$在不同色散系数$\varsigma $下随高斯势阱宽L的变化 Figure8. Spontaneous emission rate ${\tau ^{ - 1}}$ as a function of the well width L of the AG potential at different dispersion coefficient $\varsigma $.
图9表示相位品质因子Q在不同介电常数比$\eta $下高斯势不同阱宽L的变化. 由图9可以看出, Q-L曲线呈现“γ”形特点, 最小值出现在$L \approx 0.8{r_{\rm{p}}}$处. 由(12)和(13)式不难看出, 该曲线是一个被$\Delta E$调节的$\tau \text{-}L$曲线. 由图9还可以看出, Q随$\eta $的增加而增大, 这表明杂质库仑势的存在有利于相位旋转操控. 图10描绘了相位品质因子Q在不同色散系数$\varsigma $下随高斯势不同阱宽L的变化. 由图10可以看出, Q随$\varsigma $的增加而增大, 这意味着选择色散系数越大的材料制备量子点, 其量子比特球越容易实施相位旋转操控. 图 9 相位品质因子Q在不同介电常数比$\eta $下随高斯势阱宽L的变化 Figure9. Quality factors of phase rotation Q as a function of the well width L of the AG potential at different the DC ratio $\eta $.