Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11874048)
Received Date:14 September 2019
Accepted Date:12 November 2019
Available Online:19 November 2019
Published Online:20 November 2019
Abstract:Based on the correspondence between tight-binding Hamiltonian in condensed matter physics and the Kirchhoff’s current equations in lumped parameters circuits, profuse topological states can be mapped from the former to the latter. In this article, the electric-circuit realizations of 1D SSH model, 3D nodal-line and Weyl semimetals are devised and elaborated, in which the edge states, surface drum-head and Fermi-arc states are appearing on the surface of the circuit lattice. Of these circuits, the effective hopping terms in Hamiltonian have high degree of freedom. The hopping strength, distance and dimension are easy to tune, and therefore our design is convenient to be extended to non-Hermitian and four or higher dimensional cases, making the fancy states that hard to reach in conventional condensed matter now at our fingertips. Besides, the electric circuit has the advantage of plentiful functional elements and mature manufacture techniques, thus being a promising platform to explore exotic states of matter. Keywords:topological electric circuit/ nodal-line state/ Weyl semimetal
全文HTML
--> --> -->
2.从基尔霍夫电流方程到紧束缚哈密顿量集中参数电路中电流和电压的变化规律由基尔霍夫电流和电压定律刻画. 前者源于载流子的电荷守恒定律, 后者源于能量守恒定律. 对电路网络中的节点进行编号$ \alpha = 1, 2, \cdots, N $, 任意两节点α和β间导纳记为$ y_{\alpha\beta} $. 节点α上的电势记为$ v_\alpha $(取地面为零势能参考点), 流入该节点的净电流记为$ I_\alpha $. 对节点α, 从与之相连的节点$ \alpha' $流入的电流记为$ I_{\alpha\alpha'}(\alpha'\neq\alpha) $. 欧姆定律给出$ I_{\alpha\alpha'} = (v_{\alpha'}-v_{\alpha})y_{\alpha\alpha'} $, 对所有支路求和得到$\displaystyle\sum\nolimits_{\alpha'}I_{\alpha\alpha'} = \displaystyle\sum\nolimits_{\alpha'}(v_{\alpha'}-v_{\alpha})\times$$y_{\alpha\alpha'} = I_{\alpha} $. 重复此过程, 可得电路中所有节点上电压和流入电流之间的关系式$ {\cal L}{ V} = { I}$, 其中$ { V} = $$ (v_{1},v_{2},\cdots,v_{N})^{T} $为节点电压矢量,$ { I} = (I_{1}, I_{2}, \cdots, I_{N})^{T} $为节点电流矢量. 矩阵$ {\cal L} $包含了电路网络中的所有器件连接信息[69]. 考虑一种简单情况: 电路由一系列接地的LC谐振回路构成, LC谐振回路之间由电容器连接(见图1). 后面我们会看到电路采取这种连接方式形成谐振频率色散的机制和晶体中电子形成能带的物理图像非常相似. 在交流信号下电容C和电感L的导纳分别为$ y_C = {\rm j}\omega C, y_L = 1/({\rm j}\omega L) $, 其中$ {\rm j} = \sqrt{(-1)} $为虚数单位, ω为电路的谐振频率. 如果线路不外接任何源和漏(实验上可以通过为电路输入脉冲信号而后撤去电源来实现), 则电流矢量$ { I} = {0} $, 矩阵方程$ L{ V} = {0} $化简移项后可写成 图 1 一维SSH电路. 原胞(蓝色虚线框)内有A和B两个不等价节点, 经并联的电感L和电容$C_{0}$接地. 原胞内节点由电容$C_1$相连, 原胞间节点由电容$C_{2}$相连 Figure1. The 1 D LC chain, in which a unit cell containing two inequivalent nodes A and B labeled by a dashed blue box. Each node A or B is grounded through a parallel connected inductor L and capacitor $C_{0}$. All nodes are connected by $C_{1}$ and $C_{2}$ alternatively.
$ W = \int_{-{\text{π}}}^{{\text{π}}}\frac{{\rm i}{\rm d}k}{2{\text{π}}}\partial_{k}\ln h_{+}(k) = \varTheta(|C_{2}|-|C_{1}|), $
其中$ \varTheta(x) $是Heaviside阶梯函数, 当$ x > 0 $时$ \varTheta(x) = 1 $, 而$ x < 0 $时$ \varTheta(x) = 0 $. 上述结果可以通过赝自旋$ { \sigma} = (\sigma_{x}, \sigma_{y}) $在赝磁场$ { d}(k) = (d_{x}(k), d_{y}(k)) $ ($ d_x = (h_++h_-)/2 $, $ d_y = { i}(h_+-h_-)/2 $)中的极化来理解((见图2)). 赝磁场$ { d}(k) $随参数k的演化会导致赝自旋相应发生旋转, 绕原点$ { d} = {0} $的圈数对应缠绕数W. 我们还可以用Zak相位$ \phi_{Z} = \displaystyle\oint {\cal A}(k){\rm d} k $来表征系统是否处于拓扑非平庸态, 其中$ {\cal A}(k) = \langle v_{k}| {\rm i} \partial_{k}v_{k}\rangle $是贝里联络, $ |v_{k}\rangle = (-h_{+}/|E_{k}|, 1)^{T}/\sqrt{2} $是一维SSH模型频谱中低频支对应的布洛赫电势分布函数. 由此可得系统的Zak相位为 图 2 (a) 上: 电容$C_{1}$从0逐渐增加至超过$C_{2}$, 频谱中两个端点态(红线)在能$C_1=C_2$处消失, 表明系统发生了拓扑相变. 下: 系统缠绕数从1到0的跃变与端点态的消失临界值一致. $C_{1}/C_{2}=0.5$时系统的等效极化矢量在$d_{x}-d_{y}$平面上随动量参数k从0连续变到$2{\text{π}}$时绕原点一周. 红圈对应缠绕数为1; $C_{1}/C_{2}=1.5$时$(d_{x}, d_{y})$绕原点0圈. 黑色圈对应缠绕数为0. (b) 取$C_{1}/C_{2}=0.8$, 端点态(绿色和紫色)以及一个随机挑选的体态(灰色)对应的电势分布V Figure2. (a) Upper: increase the parameter of $C_{1}$ from zero to exceed $C_{2}$, the end states (red) converge into the bulk states, indicating the topological transition. Bottom: the transition of winding number is consistent with the appearance and absence of end states. The effective polarization vector $(d_{x}, d_{y})$ winds the original a round when the momentum varies continuously from 0 to $2{\text{π}}$ for $C_{1}=0.5$(left), while zero round for $C_{1}=1.5$(right). (b) The electric potential distributions of two end states (green and puple) and a randomly selected bulk state (grey).
时间反演要求$ d_{1, 3}({ k}) $为偶函数, 而$ d_{2}({ k}) $为奇函数. 当$ I = \sigma_0 $时, 空间反演不产生约束, 而$ I = \sigma_3 $时, 空间反演对称性要求$ d_{1, 2}({ k}) $为奇函数, $ d_{3}({ k}) $为偶函数. 综合上述约束方程得到$ d_{1}({ k}) = 0, \; d_{2}({ k}) $为奇函数, $ d_{3}({ k}) $为偶函数. 结线态的出现要求$ d_{1}({ k}) = d_{2}({ k}) = d_{3}({ k}) = 0 $. 在三维k空间中求解两个约束方程, 可以得到无穷多个解, 刚好是我们寻找的结线态. 例如$ d_{2}({ k}) = \displaystyle\sum\nolimits_{i = 1}^{3}a_{i}k_{i} $和$ d_{3}({ k}) = \displaystyle\sum\nolimits_{i, j = 1}^{3}b_0+b_{ij}k_ik_j $, 这两个函数同时为零的解是k空间中平面与二次曲面的交线, 此交线即为结线型能谱简并点. 下面我们按照这个思路在电路中设计结线态. 我们从二维六角蜂窝电路出发, 图3(a)所示, a-b平面内所有A和B节点通过电容$ C_{1, 2, 3} $连接(这里取三种电容值相等). 每个节点$ A(B) $由并联的电感$ L_{A}(L_{B}) $和电容$ C_{GA}(C_{GB}) $接地. 按照上一节介绍的方法, 这些二维电路系统的基尔霍夫电流方程可写成与石墨烯哈密顿量完全一致的形式. 类似于石墨烯的特征能带, 二维六角蜂窝电路的共振频谱在第一布里渊区内存在两个闭合点. 沿c方向堆叠, 层间无耦合时二维布里渊区中的频谱交点将在三维布里渊区内形成图3(a)中小图所示的两条直线型结线. 如果将最近邻层间的A和B节点用电容$ C_{4} $连接(图3(b)), 调节$ C_{4} $的容值并不破坏系统的空间反演对称性, 但直线状的结线可逐渐弯曲至闭合成为我们感兴趣的结环. 如果用$ C_{A} $($ C_{B} $)连接层间的A-A(B-B)节点(图3(c)), 选择参数$ C_{A}\neq C_{B} $和$ C_{GA}\neq C_{GB} $, 此时空间反演对称性将被破缺, 结线型交叉有可能退化成离散的外尔点. 上述电路的等效紧束缚哈密顿矩阵为[52]: 图 3 三维LC电路示意图. (a) 单层LC蜂窝电路沿c方向上无连接的堆叠起来, 每个原胞内的两个不等价节点A和B在层内由$C_{1, 2, 3}$连接. 每个节点$A(B)$都通过并联的$L_{A}(L_{B})$和$C_{GA}(C_{GB})$回路接地. a, b和c表示格矢. 小图: 单层LC电路频谱中包含两个简并点, 沿着${k}_{c}$方向扩展将在布里渊区中形成两条直线状的结线(红线). (b) 电容$C_{4}$连接最近邻层间的节点A和B, 结线在给定合适的$C_{4}$时将弯曲成闭合环形. (c) 电容$C_{A}(C_{B})$连接最近邻层间的A-A(B-B)节点对, $C_{A}\neq C_{B}$且$C_{GA}\neq C_{GB}$时空间反演对称破缺, 环状结线可能退化成离散的外尔点. 此外, LC网络可以变形成(d), 简化实验装置的同时保证频谱不变 Figure3. Schematic setup of the 3 D LC circuit lattice. (a) LC honeycomb layers stacked along c-direction without any interlayer connection. Two inequivalent nodes A and B within a unit cell, linked by capacitors $C_{1, 2, 3}$. Each node A(B) is grounded through the parallel connected inductor $L_{A}$($L_{B}$) and capacitor $C_{GA}$($C_{GB}$). a, b, and c denote lattice vectors. Inset: spectra of a single layer LC lattice includes two band-crossing points, extended uniformly along ${k}_{c}$-direction and form two straight nodal lines (red) in the BZ. (b) Connecting nodes A and B between the nearest neighbor-layers with $C_{4}$. The straight lines could be curved to a closed ring given appropriate $C_{4}$. (c) Connect node-pairs A-A(B-B) between the nearest neighbor-layers with $C_{A}$($C_{B}$), to break space inversion symmetry by setting $C_{A}\neq C_{B}$ and $C_{GA}\neq C_{GB}$, and the nodal ring may be degenerated to discrete Weyl points. The LC network can be deformed into (d), which is convenient to construct circuit elements in experiments while spectrum invariant.
其中$ \mu\equiv \displaystyle\sum\nolimits_{i = 1}^{4}C_{i} $. 取$ L_{A} = L_{B} = L_{G} $可求出两支色散曲线$ \omega_{1, 2}^{-2}({ k}) = L_{G}\Big[d_{0}({k})\pm\sqrt{\displaystyle\sum\nolimits_{i = 1}^{3}d_{i}^{2}({ k})}\Big] $, 通过调节系统里的电容参数值, 便能得到上面讨论的结线态. 体边对应要求非平庸的结线对应着表面态的存在, 沿(001)方向投影能带的结环内部会出现图4(b)中色散极小的鼓膜态. 将三维布洛赫哈密顿矩阵参数化为等效的一维系统$ H(k_{a}, k_{b}) $, 沿$ k_{c} $方向进行积分即得到$ k_{a}\text-k_{b} $面上的贝里相位$ \theta_{k_{\parallel}} = \displaystyle\int\langle v_{{ k}}|{ i}\partial_{k_{c}}v_{{ k}}\rangle dk_{\perp} $, 其中$ |v_{{ k}}\rangle $为频谱中低频支的布洛赫电势分布函数. 积分路径位于结线内部时得到拓扑非平庸的贝里相位π, 否则是平庸的相位0. 图 4 (a) 结线(红色)及其在(001), (010)和(100) 面上的投影(灰色). 此时参数取为$ C_{1}=1~{\rm mF}, C_{2}=2~{\rm mF}, C_{3}=1~{\rm mF}, $$ C_{4}=0.833~{\rm mF}, C_{GA}=C_{GB}=1~{\rm mF} $和$L_{A}=L_{B}=1~{\rm mH}$. (b) 沿Γ-M-A-Y-B-M-Γ路径的频谱, 其中A和B是(a)中结线与$k_{c}=0$平面的交点. 上: (001) 方向的体态(灰色)及表面态(红线), 以及周期边界条件下的能带(紫色). 下: 积分路径在结线内部(外部)的贝里相位$\theta_{k_{\parallel}}$等于拓扑非平庸的π(平庸的0) Figure4. (a) Nodal line (red) and its projections (grey) on the (001), (010), and (100) planes. The parameters are set as $ C_{1}=1 ~{\rm mF}, C_{2}=2 ~{\rm mF}, C_{3}=1~{\rm mF}, C_{4}=0.833~{\rm mF}, C_{GA}=C_{GB}=1 ~{\rm mF}$, and $L_{A}=L_{B}=1~{\rm mH}$. (b) Bands along Γ-M-A-Y-B-M-Γ, where A and B are two points with $k_{c}=0$ on the nodal line as labeled in (a). Upper: the bulk bands(grey) with the drumhead-like surface states nestled inside the projection of the nodal ring (red) on the (001) surface and the two bands (purple) in periodic boundary condition. Bottom: the Berry phase $\theta_{k_{\parallel}}$ equals π(0) inside (outside) the nodal ring.
24.2.拓扑外尔态 -->
4.2.拓扑外尔态
取电容值$ C_{A}\neq C_{B} $, $ C_{GA}\neq C_{GB} $可以破缺空间反演对称性从而使结线态相变到外尔态. 此时$ d_{3}({ k}) $不再恒为零, 能隙闭合条件需要进一步要求$ \cos k_{c} = 1+(C_{GA}-C_{GB})/2(C_{A}-C_{B}) $. 选取电容参数使得等式右边小于1, $ d_{3}({ k}) = 0 $在三维布里渊区中给出两个垂直于$ k_{c} $的平面, 当这两个平面与$ d_{1, 2}({ k}) = 0 $给出的结线相交时便得到图5(a)中的4个交点, 这正是我们寻找的外尔点. 由于时间反演对称性会把一个位于k的外尔点映射到手性相同但位于$ -{ k} $的外尔点, 而整个系统的外尔点手性之和恒为零. 于是这四个外尔点的手性必然有2个为正, 另2个为负, 即这类具有时间反演对称性的系统中外尔点的最小数目为4. 如图5(b)所示将$ k_{a} $作为参数, 可得一系列由$ k_{b}-k_{c} $张成的二维面, 由这些二维面上陈数的变化可判断出外尔点的手性. 在远离外尔点处二维面上的能带具有能隙, 若存在非零陈数, 则开边界时能隙中会出现非平庸的手征表面态. 因此, 和电子系统中的外尔半金属类似, 电路系统中手性相反的两个外尔点在表面的投影也会被表面费米弧连接起来. 图 5 (a) 布里渊区中的四个外尔点及它们在(001), (010)和(100)方向的投影. 取$C_{A}=0.2~{\rm mF}$, $C_{B}=0.01~{\rm mF}$和$C_{GA}= 0.77~{\rm mF}$, 其它参数均与图4中相同. 外尔点是由$d_{1, 2}(k)=0$决定的结线与$d_{3}({k})=0$决定的两平面的交点, 它们的手性用蓝色五角星($\chi=+1$)和红色圆点($\chi=-1$)标记. (b) 左上: 在 (001) 表面上, 费米弧连接了手性相反外尔点的投影点. 右上: 开边界时路径AB上(亮青色虚线)的无能隙表面态, 绿色虚线标记外尔点所在频率. 左下: 垂直于$k_{a}$的各平面上的陈数. 沿$k_{a}$方向移动, 经过正(负)手性外尔点时平面上的陈数会增加1(减少1) Figure5. (a) Four Weyl points in the Brillouin zone and their projections on (001), (010) and (100) direction. $C_{A}=0.2~{\rm mF}$, $C_{B}=0.01~{\rm mF}$, and $C_{GA}= 0.77~{\rm mF}$ are used in the calculations. The other parameters are the same as Fig.4. The Weyl points are the intersection points between the nodal ring determined by $d_{1, 2}({k})=0$ and the two planes determined by $d_{3}({k})=0$. The chirality are indicated as blue stars (red points) for $\chi=+1$($-1$). (b) upper left: on the (001) surface, Fermi arcs connect the projections of the bulk Weyl nodes carrying opposite chiralities onto the surface. Upper right: the gapless surface band in the $A-B$ path. Dashed green line denotes the frequency where Weyl points lie. Bottom left: the Chern numbers for planes perpendicular to $k_{a}$. Moving along $k_{a}$, the Chern number increases (decreases) when the plane passing through the Weyl points with +1(–1) chirality
在上面的讨论中, 我们考虑的是理想电容和电感. 实际中的电子元件受到制造工艺等因素影响, 其真实参数在标注值的基础上都存在一定范围的误差, 需要进一步考虑参数误差对前面两类拓扑态的影响. 由于结线态需要空间反演对称性保护, 在大量器件都存在误差的前提下要保持此对称过于困难, 因而一般是不稳定的. 而外尔态只要求系统的平移对称性以保持动量空间的存在, 不需要其他对称性, 可以期待外尔点能抵抗一定程度的器件参数误差. 下面我们对上述电路进行器件误差分析. 考虑一个$ 3\times 3\times 3 $的超胞. 其中电容参数在精确值基础上附加一定幅度的随机误差, 即哈密顿矩阵中的化学势和跃迁项被附加随机数. 误差幅度从0开始以精确参数值的5%为步长逐渐增加到100%, 每个数据点随机选取均匀分布的误差重复100次并计算第$ N/2 $条和第$ N/2+1 $条能带的频率差. 如图6所示, 误差强度小于30%时外尔点依然存在. 图 6$3\times 3\times 3$超胞的能隙$\Delta\omega^{-2}\equiv\min\{\omega_{N/2+1}^{2}-\omega_{N/2}^{-2}\}$随误差幅度的变化, 其中N是能带条数. 参数同图5理想情形. 每种误差幅度随机重复计算100次. 数值计算中误差幅度不超过30%时外尔点仍然存在. 小图为电容误差幅度为$\pm 20\%$时两个外尔点所在路径的色散 Figure6. The band gap, $\Delta\omega^{-2}\equiv\min\{\omega_{N/2+1}^{2}-\omega_{N/2}^{-2}\}$ as a function of the tolerance values for a $3\times 3\times 3$ super cell, where N is the number of total bands. The parameters are the same as Fig.5 in ideal case. Each range of tolerance is calculated 100 times. Numerical results show that Weyl points survive for ranges less than the critical value 30%. Inset: the bands along the k-path crossing two Weyl points with 20% range of tolerance on the capacitors.