1.School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 2.Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11674119, 11690030, 11690032), and X. F. Z. Acknowledges the Financial Support from the Bird Nest Plan of HUST, China.
Received Date:02 July 2019
Accepted Date:09 September 2019
Available Online:01 November 2019
Published Online:20 November 2019
Abstract:Topological sound has enriched the way of implementing the sound manipulation, which can effectively suppress the backscattering due to topological protection. As an inherent longitudinal wave, sound wave has no " spin” and only supports longitudinal vibration. Creating the " pseudospin” degree of freedom is crucial to topological state for acoustic wave. In previous studies, a circulating fluid flow in the background field is introduced to break the reciprocity of wave propagation in an acoustic system, which still faces technically a challenge. On the other hand, acoustic analogues of quantum spin Hall state and valley Hall state are realized by relying on the Kramers doublet in the lattices with C6 symmetry and the broken mirror symmetry or inversion symmetry, respectively. In these cases, the distributions of acoustic energy flux in the unit cells emulate the pseudospins. Based on the band inversion, the topological sound carrying pseudospin is implemented at the interface between topologically trivial and non-trivial sonic crystal. Because of the close relevance to the lattice symmetry, these pseudospin-based topological state in the time-reversal invariant system is sensitive to structural defects. In this work, we investigate the topological sound in chiral sonic crystal consisting of resonant air tubes. The counterclockwise and clockwise length variation of air tube correspond to different topological phases. A defect meta-molecule is created at the symmetric interface, which supports resonant state in the band gap. The interface state occurs at the boundary between two opposite chiral sonic crystals. Owing to the resonant structure, we realize subwavelength topological sound transport with a subwavelength-transverse confinement. For the state carrying monopolar-mode symmetry, it is expected to preserve the mode symmetry under randomly introduced defects. As anticipated, the numerical results show that the topological sound has very strong robustness against various defects, such as the variation of positions and length of air tube. Finally, we utilize the field symmetry of topological sound in chiral sonic crystal to realize robust edge transport along soft or rigid boundary. Through the mirror symmetry operation of soft or rigid boundary, we construct an interface between the real lattice and its virtual image. The approach greatly reduces the dimension of sonic crystal device. Our work may conduce to the advances in topological acoustics, since the subwavelength-scale topological state promotes the applications of miniaturized acoustic devices. Keywords:sonic crystals/ acoustic topological insulators/ subwavelength scale
全文HTML
--> --> --> -->
3.1.手性诱导的界面态
我们在相反手性原胞组成的界面探究了局域界面态. 如图2(a)所示, 相反手性原胞组成一个大的复式共振结构, 其包含八个共振元素在边界处呈两两镜像分布. 因此, 生成的无手性缺陷“超原子”出现在界面处, 如图2(a)中黑色虚线框所示. 这些缺陷元素自然会伴随着额外的本征模式出现. 在图2(a)右侧, 按照频率从低到高依次展示了这些界面模式, 其中最低频的模式${f_{{\rm{a1}}}}$呈现单极子对称分布, 而高频的模式fa2—a4则呈现偶极子分布. 由于单极子共振模式趋向于分布在高度较低的空气腔界面, 我们选取长度较短的${h_3}$和${h_4}$靠近界面, 这种结构会使得单极子模式稳定存在. 随后, 界面组合扩展为一维的带状结构, 六个右手性的原胞和六个左手性的原胞分别位于界面上下侧. 如图2(b)所示, 我们计算了对应的超胞能带, 其中蓝色曲线代表界面态, 灰色区域代表体带. 在${k_x} = 0.7{{\text{π}}}/{a}$位置, 我们选取四个界面模式, 其中第一个模式的场分布在图2(b)右侧. 我们发现声压场主要集中在界面位置, 并呈现单极子对称分布, 这为拓扑声波传输提供了可能. 值得注意的是, 图2(b)右侧模态其波矢值拥有正的群速度值, 对应向前的能流移动. 我们给出了${f_{{\rm{a}}1}}$模式声压本征场的能流分布, 其箭头指向代表正的能流方向, 如图2(b)右侧放大的插图. 在第三个禁带中, ${f_{{\rm{a2}}}}$模式对应于反对称的奇模式, ${f_{{\rm{a3}}}}$模式对应于对称的偶模式. 软、硬边界在声学中起镜像作用, 会等效形成对称界面结构. 对称界面可由两种边界取代. 声学奇偶模式与软、硬边界两侧场分布有一致的对称性[27]. 因此, 镜像对称界面会支持奇偶模式同时存在. 为了验证界面态的鲁棒性, 在图2(c), 我们引入随机的位置微扰和高度微扰. 鉴于单极子模式良好的抗微扰特性, 选取低频${f_{{\rm{a1}}}}$模式进行分析. 通过随机移动组成缺陷分子的四个空气腔的位置, 来引入位置缺陷. 如图2(c)中黑色框线所示, 黑色虚线圆代表标准位置, 彩色实体圆代表引入微扰后的位置. 位置微扰大小不超过$\left[ {0, l/2} \right]$, 以黑色虚线圆为中心可超各个方向移动. 此外, 在图2(c)底部, 随机高度微扰引入至缺陷的原胞, ${\rm{\delta }}{h_{\rm{a}}}, {\rm{\delta }}{h_{\rm{b}}}, {\rm{\delta }}{h_{\rm{c}}}, {\rm{\delta }}{h_{\rm{d}}}$表示随机的高度微扰大小, 其幅度不超过高度相近空气柱的差值, 即${h_3} - {h_4}$ = 0.3 cm. 对于在带状超胞中引入微扰的情形, 由于计算施加的周期性边界条件, 微扰会周期性地重复. 不同于图2(b)所示的无微扰界面, 色散关系适用于局域微扰情形. 图2(c)中周期微扰存在时也会有对应界面模式存在, 只是超胞色散频率范围相比无微扰界面情形会发生一定改变. 对于低频模式, 此改变不会破坏单极子对称性, 声波依然可以局域传输. 这些结果表明, 手性系统具有较强的抗微扰特性. 确切地说, 只要保持界面两侧手性, 不管位置微扰还是高度微扰都不能破坏局域的界面模式. 图 2 超胞色散和局域界面态 (a)相反手性原胞构成镜像对称界面; (b)带状超胞能带色散, 其中五条蓝色曲线代表界面态, 灰色曲线代表体带, 超胞由六个左手性的原胞和六个右手性的原胞组成, 其单极子模式局域在界面处; (c)单极子界面模式对于位置微扰和高度微扰有较强鲁棒性 Figure2. Band structures of the interface states: (a) The mirror symmetric interface constructed by oppositely chiral unit cells; (b) the projected band structure of a supercell, the right part shows the supercell slab comprises 6 left-handed and 6 right-handed unit-cells with an even mode (fa1) localized at the interface; (c) the robustness of the even mode against randomly introduced position and height disorders of air tubes.
23.2.声波鲁棒传输 -->
3.2.声波鲁棒传输
将一维带状超胞沿着x (水平)方向扩展, 转换研究二维的传输. 周期性重复形成的波导界面可允许界面态沿路径传输. 如图3(a)所示的正方晶格, 下侧左手性原胞与上侧右手性原胞拼接成线性的镜像界面, 形成了不同拓扑性质的体介质. 随后, 用COMSOL Multiphysics 压力声学频域模块进行全波模拟, 晶体外侧设置为完美匹配层吸收边界. 我们选取处在第二个禁带的频率1481 Hz来模拟, 其模态对应单极子模式声场分布. 一个平面波入射源放置在晶体左侧入口来激发声场, 如图3(b)黑色箭头所示. 声压场沿着黄色虚线直线传输, 局域在界面附近, 没有明显的扩散和反向散射. 值得注意的是, 在选定的频率下, 声波波长约为晶格常数的5.75倍, 满足小尺寸大波长的亚波长要求. 由于结构的亚波长特性, 传播的声场带有亚波长横向局域, 底部声场宽度${W_{\rm{l}}}$约为0.09$\lambda $. 对于单极偶对称的${f_{{\rm{a}}1}}$模式, 空气腔体在界面处展现亚波长传输效果, 产生强的耦合共振. 因此, 此种单极模式对于局部的位置和高度微扰有很好的免疫效果. 随后, 针对同一工作频率, 在图3(c)和图3(d)分别在界面设置两处位置微扰和高度微扰以验证鲁棒性. 绿色方框标记微扰的位置. 进一步地, 图3(e)给出了对应三种传输情形的透射谱图和统一手性的体态谱图. 与未加微扰的透射率相比, 较大微扰的透射率发生一定的下降. 如果引入足够多的微扰并且微扰程度引起手性的破环, 拓扑传输效率就会降低. 总之, 手性保护的拓扑传输可以抑制声波背向散射, 对于一般的结构微扰, 界面处可以呈现较高传输效率. 然而, 对于统一手性的晶体, 声波展现较低的界面传输效率, 如图3(e)绿色虚线所示. 最后, 沿着同一水平位置的垂直方向, 我们提取每个圆腔的声压幅值来验证声波的边界局域性, 如图3(b)—(d), 青色直线代表选取的路径, 其长度为11l. 通过图3(f)可知, 对于两种微扰, 声波仍然能束缚在较小横向宽度范围. 因此, 手性波导结构使得声波受到界面两侧手性保护, 表现了鲁棒的声波传输. 此外, 本文共振腔结构突破一般拓扑结构几何尺寸限制, 可实现亚波长传输. 图 3 亚波长声波鲁棒传输 (a)镜像界面沿着x方向周期排布成直线波导通道; (b)单极子界面模式沿着波导通道局域传输; (c)在引入位置缺陷时, 声波沿直线局域的传输没有明显的背散射; (d)在引入高度微扰时, 声波沿直线局域的传输没有明显的背向散射; (e)几种不同情况下的传输效率曲线, 黑红蓝色曲线表示界面传输透射, 绿色曲线表示统一手性晶体中体态传输透射, 灰色区域表示禁带范围; (f)沿着横向路径的声压幅值分布 Figure3. Robust transport of sound in subwavelength scale: (a) The schematic of the mirror interface between two oppositely chiral sonic crystals; (b) the propagation of even interface modes along the waveguide channel without defects; (c) the propagation of even interface modes along the waveguide channel with position variations of air tubes; (d) the propagation of even interface modes along the waveguide channel with length variations of air tubes; (e) acoustic transmission for interface states and bulk states, the gray ribbon marks the band gap from 1407 Hz to 1487 Hz; (f) pressure amplitude distributions in the transverse direction.