Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11774042, 11704056), the High-level Personnel in Dalian Innovation Support Program, China (Grant Nos. 2016RQ037, 2017RQ070), the Open Fund of the State Key Laboratory of Integrated Optoelectronics Granted, China (Grant Nos. IOSKL2019KF06, OSKL2018KF02), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132019186, 3132019338, 3132019035), and the Postgraduate Education and Teaching Reform Project of Dalian Maritime University, China (Grant Nos. YJG2019209, YJG2019210)
Received Date:04 August 2019
Accepted Date:29 August 2019
Available Online:01 November 2019
Published Online:05 November 2019
Abstract:In order to obtain the Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 up-conversion phosphor material with maximum red luminous intensity, three steps are adopted as follows. Firstly, the uniform design in the experimental optimal design is used to find the reasonable doping concentration of Er3+/Yb3+. Secondly, according to the quadratic general rotary unitized design, the regression equation of the red luminescence intensity of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 under 980 nm and 1550 nm excitations is established. Finally, the optimal solution of the regression equation is obtained by genetic algorithm. The Ba5Gd8Zn4O21:Er3+/Yb3+ phosphors are prepared by a high-temperature solid-phase method. The crystal structure for each of the prepared phosphors is analyzed by X-ray diffraction, and it is confirmed that the prepared phosphor samples of Ba5Gd8Zn4O21 are all in pure phase. Using the 980 nm laser as an excitation source, the relationship between the red up-conversion luminescence intensity of the optimal sample and the operating current of the laser is studied. It is found that the red luminescence is emitted through a double-photon process by the formula fitting analysis. Using the 1550 nm laser as the excitation source, it is found that red luminescence is emitted through a three-photon process. The up-conversion emission spectrum of the optimal sample with respect to temperature is measured and discussed, and it is found that the red up-conversion luminescence intensity of the sample is weakened as the temperature increases. The optimal samples are compared with the commercial phosphors of NaYF4:Er3+/Yb3+ under the 980 nm and 1550 nm excitation respectively, the luminescence intensity of the optimal sample is much stronger than that of the commercial phosphor of NaYF4:Er3+/Yb3+. Moreover, under the same power density excitation, the red up conversion luminescence intensity of the optimal sample at 980 nm is stronger than that at 1550 nm. Keywords:uniform experimental design/ experiment scheme of quadratic general rotary unitized design/ red up-conversion luminescence/ Ba5Gd8Zn4O21:Er3+/Yb3+
图 2 Er3+/Yb3+共掺Ba5Gd8Zn4O21在980 nm激光激发下的上转换发射光谱(插图为3号样品与最优样品的发光强度对比) Figure2. Up-conversion emission spectra of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor under 980 nm laser excitation. Inset picture shows the luminescence intensity of No. 3 sample and the optimal sample for comparison.
23.2.最优样品的晶体结构表征 -->
3.2.最优样品的晶体结构表征
图3(a)对应着Er3+/Yb3+共掺中Yb3+最大浓度样品的XRD图样, 图3(b)对应着Er3+/Yb3+共掺中Er3+最大浓度样品的XRD图样, 图3(c)对应着1550 nm激光激发下红光最优样品的XRD图样, 图3(d)对应着980 nm激光激发下红光最优样品的XRD图样; 图3(e)给出了Ba8Gd5Zn4O21粉末衍射的标准卡片JCPDS card No. 51-1686. 经过对比可以看出, 图3(a)—(d)的XRD图样与标准卡片的衍射峰位置一致, 于是可以确认合成的Ba8Gd5Zn4O21∶Er3+/Yb3+粉末样品为纯相. 由于Gd3+与Er3+/Yb3+的离子半径接近, 所以并没有使共掺的Ba8Gd5Zn4O21的晶体结构发生改变而产生衍射峰的偏移[23]. 图 3 样品的XRD与标准卡片JCPDS No.51-1686图样 Figure3. XRD patterns of samples, and standard peaks of Ba8Gd5Zn4O21 (JCPDS No.51-1686) are included for comparison.
通过此关系进行非线性拟合, 得出n值[24]. 图4为不同波长激发下红光上转换发光强度与抽运工作电流的依赖关系, 通过对最优样品的分析可以发现, 样品在1550 nm激光激发下红光的n值为2.83, 这与三光子过程的理论值基本相同, 说明最优样品在1550 nm激光激发下实现红光与绿光上转换均为三光子过程, 而拟合数值的细微差异可能是由于求得的积分面积或是拟合过程造成的; 样品在980 nm激光激发的情况下红光的n值为1.83, 可以说明最优样品在980 nm激光下实现红光上转换为双光子过程. 图 4 上转换发光强度积分与激光器工作电流的依赖关系 Figure4. Dependence of the integrated intensity of up-conversion luminescence on laser working current.
23.4.温度对最优样品红光上转换发光的影响 -->
3.4.温度对最优样品红光上转换发光的影响
为了研究温度对Ba8Gd5Zn4O21∶Er3+/Yb3+粉末上转换发光的影响, 改变温度, 对最优样品进行上转换发射光谱的测量, 并求出红光发光部分的积分面积. 图5(a)和图5(b)分别是980 nm和1550 nm激光激发下最优样品的红光上转换发光强度随温度的变化, 图中红光的上转换发光强度随着温度的升高而呈现下降的趋势. 图 5 最优样品在(a) 980 nm与(b) 1550 nm激光激发下的红色上转换发光强度随温度的变化 Figure5. Dependence of red up-conversion luminescence intensity on temperature under (a) 980 nm and (b) 1550 nm excitation for optimal samples.
23.5.最优样品与NaYF4∶Er3+/Yb3+红光商品粉的发光强度比较 -->
3.5.最优样品与NaYF4∶Er3+/Yb3+红光商品粉的发光强度比较
在980 nm和1550 nm激光激发下, 通过改变抽运工作电流分别测得NaYF4∶Er3+/Yb3+红光商品粉与最优样品的红光上转换光谱, 积分后进行比较, 如图6所示. 图6(a)和图6(c)为最优样品红光上转换发光强度积分; 图6(b)和图6(d)为NaYF4∶Er3+/Yb3+商品粉末的红光上转换发光强度积分. 通过对比可以看出, 此次制备的最优样品荧光粉红光上转换发光强度远强于NaYF4商品粉, 并且随着抽运电流的增强, 两者发光强度差呈增大趋势. 图 6 在(a), (b) 980 nm和(c), (d) 1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的比较 Figure6. Dependence of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under (a), (b) 980 nm and (c), (d) 1550 nm excitation for optimal samples.
图7为980 nm和1550 nm激光激发下最优样品与NaYF4商品粉末的红光发光强度的倍数比. 图 7 在980 nm和1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的倍数比 Figure7. The Multiple ratio of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under 980 nm and 1550 nm excitation for optimal samples.
将最优样品在相同激发功率密度下进行红光上转换发光强度的比较, 如图8所示, 图8(a)是1550 nm激光激发下的最优样品的红光上转换发光强度积分, 图8(b)是980 nm激光激发下的最优样品的红光上转换发光强度积分. 可以看出, 在相同激发功率密度的情况下, 980 nm激光激发下的最优样品比1550 nm激光激发下的最优样品红光上转换发光强度更强. 图 8 相同功率密度下最优样品的红光上转换发光强度比较 Figure8. Comparison of red up-conversion luminescence intensity of optimal samples at the same power density.