1.Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China 2.College of Science, Hohai Univeisity, Nanjing 210098, China 3.National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Fund Project:Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2019B44214, 2018B19414), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010), and the Open Subject of National Laboratory of Solid State Microstructures, China (Grant No. M32055)
Received Date:29 July 2019
Accepted Date:03 September 2019
Available Online:01 November 2019
Published Online:05 November 2019
Abstract:As the economy grows and the environment deteriorates, the renewable energy is urgently needed. The advanced energy storage technology in electronic equipment, electric vehicle, smart grid, etc. becomes more significant. For example, the rechargeable batteries, hydrogen storage media, supercapacitors, the new energy storage devices have received much attention today. The anodes of the lithium ion battery (LIB), as the main body of charging and discharging, should be most important. The ideal anode material for LIBs is required to possess a higher Li capacity and a lower volume expansion. Good reversibility and high Li capacity are balanced necessarily in the electrode material. The poor cycling performance of LIB is usually due to the severe volume expansion of anode in lithiation/delithiation process. In this paper, the Li storage performance of B and N doped graphyne is explored by using the density functional theory method. The Perdew-Burke-Ernzerhof functional of the generalized gradient approximation is chosen. The calculations indicate that the doping of B atoms can enhance the adsorption strength between the Li atom and the graphyne, which can greatly increase the Li storage capacity. The Li storage capacity of B doped graphyne can reach as high as 2061.62 mAh/g, which is 2.77 times that of pristine monolayer graphyne. Meanwhile, the B doping reduces the out-plane diffusion energy barrier of Li, but increases the in-plane diffusion energy barrier slightly by 0.1 eV. On the other hand, the doping of N atoms reduces the interaction between Li and graphyne, however, the Li capacity also increases to 1652.12 mAh/g because the number of the available Li adsorption sites increases. Moreover, the doping of N atoms greatly improves the diffusion performance of Li on graphyne. The in-plane diffusion energy barrier drops to 0.37 eV, and thus the charge-discharge performance of the N doping graphyne is well improved. Therefore, the doping of B and N atoms can remarkably improve the performance of graphyne as the LIB anodes. The remarkable performance of B and N doped graphdiyne shows that it will become a promising LIB anode in the future. The present research can provide a good theoretical basis and thus conduce to guiding the developing of good Li storage materials, and can also supply strong background for experimental researches. Keywords:graphyne/ B doped graphyne/ N doped graphyne/ Li storage/ density functional theory
表1B, N掺杂的石墨炔的晶格常数、键长、Mulliken电荷及Eb Table1.Lattice constant, bond length, Mulliken charge and Eb of B, N doped graphyne.
图 1 2 × 2 × 1的石墨炔晶胞中单个B, N的两种掺杂位点, 分别为环掺杂和链掺杂 Figure1. Two doping sites of single B and N in the 2 × 2 × 1 supercell of graphyne. They are ring doping and chain doping respectively.
考虑到结构的稳定性及B, N原子在两处位置的结合能, 选取B原子环掺杂的石墨炔和N原子链掺杂的石墨炔来进行储Li研究. 为了包含完整的链和环, 选用2 × 2 × 1的周期性晶胞来模拟单层结构. 因为B和N原子分别比C原子少一个和多一个电荷, 因此, 首先计算了B, N掺杂结构带一个负电荷时的静电势来预测可能的储Li位点(图4). 图4中红色代表电势高, 绿色代表电势低, 与未掺杂的纯碳石墨炔相同, 大孔上方(H位点)和小孔上方(h位点)是Li合适的吸附位点. 由图4可知, H位点比h位点电势更低. 图 4 B, N掺杂石墨炔静电势的平视图与侧视图(静电势范围为1.0?–1.0 Ha·e–1) Figure4. Flat view and side view of the electrostatic potential of B, N doped graphyne. The range of electrostatic potential is 1.0?–1.0 Ha·e–1.
其中, ELi表示单个Li的总能量; EB/N-graphyne表示B, N掺杂石墨炔的总能量, 而EB/N-graphyne + Li表示Li吸附的B, N掺杂石墨炔体系的总能量. 计算发现, 一个Li吸附在B掺杂的石墨炔的H位点和h位点的吸附能分别为4.16和3.27 eV, Li原子距离表面的吸附高度分别为0.87和1.83 ?. 这和静电势图的预测很好地符合, H位点电势低, Li更倾向位于H位点. 相比于在未掺杂石墨炔上的吸附能(H位点3.33 eV, h位点2.50 eV)[46], Li在B掺杂石墨炔上的吸附能大幅增加, 这预示着B掺杂可以增强Li的结合. 然而, 当一个Li位于N掺杂石墨炔的H和h位置时, 吸附能分别为2.75和2.32 eV, 吸附高度分别为1.10和1.83 ?, 相比于未掺杂石墨炔吸附能却有所降低. 为了阐明出现这种现象的原因, 计算单个Li原子分别位于H和h位点时的电荷转移量以及差分电荷密度图. 计算得知, Li位在B掺杂石墨炔的h位点时转移电荷为0.52 e, 小于Li位于N掺杂石墨炔h位点时电荷转移量0.58 e. 由于Li离子受到原子间斥力和静电作用力而能够稳定结合, 但是B, N位于h位点时的吸附高度同为1.83 ?, 因此B掺杂的石墨炔h位点处相比于N掺杂石墨炔h位点处的场强大、电势低, 于是Li位于B掺杂石墨炔h位点时的吸附能大于N掺杂石墨炔. 由图5(a)和图5(b)可以更清晰地看出, Li吸附于B掺杂石墨炔h位点时与B—C1键之间明显有电荷聚集, 表明Li离子与B—C1键之间有较强的相互作用. 当Li吸附于H位点时有相同的情况, 有0.41 e电荷转移到B掺杂石墨炔, 而有0.50 e的电荷转移到N掺杂石墨炔. 在图5(c)中, Li离子与C2—C2三键之间有较多的电荷聚集, 表明Li离子与B掺杂的石墨炔之间存在强烈的相互作用, 而对于N掺杂石墨炔, Li离子仅与C2—C2三键之间有强烈的相互作用, 与N—C2键之间的相互作用较弱. 因此, N掺杂反而削弱了Li离子在石墨炔平面上的吸附强度. 图 5 一个Li位于B掺杂的石墨炔(a) H和(c) h位点时的差分电荷密度图; 一个Li位于N掺杂石墨炔(b) H和(d) h位点的差分电荷密度图; 其中差分电荷密度范围为–0.01?0.005 e/?3, 红色表示电子积聚, 蓝色表示电子缺失 Figure5. Differential charge densities: One Li at (a) H and (c) h sites of the B-doped graphyne; one Li at (b) H and (d) h sites of the N doped graphyne. The range is –0.01? 0.005 e/?3, the red area stands for electron accumulation, and the blue area stands for electron deletion.
其中, n是吸附的Li的总个数; ELi, EB/N-graphyne和EB/N-graphyne+nLi分别为单个Li原子的能量、B和N掺杂石墨炔的能量、Li和B及N掺杂石墨炔结构的总能量. 将多个Li原子吸附结构命名位C11BLix和C11NLix. 图6给出了多个Li原子在B, N掺杂石墨炔上的平均吸附能随x的变化规律. 由图6可知, 随着储Li量的增加, Li的平均吸附能明显降低, 因为Li离子之间的排斥力使其难以吸附更多Li原子. N掺杂石墨炔的吸附能下降趋势比B掺杂石墨炔更为平缓, 预示着N掺杂石墨炔有着更平缓的放电电压. 图 6 多个Li在B, N掺杂墨炔上的平均吸附能随储Li数量的变化 Figure6. The Ead curves of multiple Li adsorbed on B, N doped graphyne.
当B掺杂石墨炔单侧储Li量达到C11BLi11时, 结构发生轻微形变, 如图7(a)所示, 此时Li原子的平均吸附能为2.15 eV. 继续添加Li原子时, 结构变形更加严重. 由于负极材料较大的结构形变会导致较高的体积膨胀比, 因此, B掺杂的石墨炔单侧最大储Li量为C11BLi11时对应的储Li容量为2061.62 mAh/g, 几乎是未掺杂石墨炔的2.77倍[10]和石墨的5.54倍[47]. 对于N掺杂的石墨炔, 当掺杂36个Li原子时即储Li容量达到C11NLi9时, 结构发生轻微形变(图7(b)). Li的数量继续增加会导致更大的结构形变, 当N掺杂石墨炔的最大储Li量为C11NLi9时, 储Li容量高达1652.12 mAh/g. 令人意外的是, 虽然N掺杂降低了Li的吸附能, 然而N掺杂石墨炔的储Li容量仍是未掺杂石墨炔的2.22倍. 可以发现, 当Li占据了最佳吸附位点后, 后来的Li可以吸附到C2原子和N原子的顶位. 这表明N掺杂虽然降低了Li的吸附能, 但是增加了Li的可吸附位点, 因此也能有效增加体系的储Li容量. 图 7 (a) B掺杂石墨炔最大Li结构的俯视图和侧视图; (b) N掺杂石墨炔最大储Li结构的俯视图和侧视图 Figure7. (a) Top and side view of the maximum Li adsorbed with B graphyne; (b) top and side view of the maximum storage Li adsorbed N doped graphyne.
其中, Ebcc?Li是Li的体心立方晶体的能量, e是电子的电荷量. 图8给出了B, N掺杂石墨炔的开路电压随储Li容量的变化. Li离子电池为了获得高工作电压, 负极的开路电压要尽可能低[48]. 此外, 为了获得更好的工作性能, 开路电压要尽可能平坦[49,50]. 从图8可以看出, 在储Li容量很小的阶段, B掺杂石墨炔的开路电压达到2.32 V, 随着储Li容量的增加, 平均开路电压骤然下降到1.01 V. 而N掺杂石墨炔的开路电压相对较低, 平均开路电压为0.51 V, 低于B掺杂石墨炔的平均值0.81 V. 但是, 值得注意的是, B掺杂石墨炔在高储Li容量阶段具有一段较为平坦的开路电压, 容量为750— 2061 mAh/g时的平均开路电压仅为0.42 V, 小于未掺杂石墨炔的平均开路电压0.64 V[51]. 因此, B掺杂石墨烯具有更好的工作电压. 图 8 B, N掺杂石墨炔的开路电压随储Li容量的变化, 其中橙色划线表示B掺杂石墨炔的平均开路电压, 紫色划线表示N掺杂石墨炔的平均开路电压 Figure8. Change curves of the open circuit voltage with the storage Li capacity for B, N doped graphyne. The orange dash line represents the average open circuit voltage of B doped graphyne, and the purple dash line represents the average open circuit voltage of N doped graphyne.
23.4.Li在B, N掺杂石墨炔上的扩散 -->
3.4.Li在B, N掺杂石墨炔上的扩散
为确定B, N掺杂石墨炔作为Li离子电池负极的充放电性能, 计算Li在B, N掺杂石墨炔上的扩算能垒. 如图9所示, Li在B, N掺杂石墨炔上均有3条不同的扩散路径, 其中两条路径(path 1和path 2)为平面内扩散路径, 一条路径(path 3)为面外扩散路径, 垂直穿过平面到达另一侧. 能垒大小可以通过过渡态搜索进行计算[52,53]. 图 9 Li在B, N掺杂石墨炔上的扩散路径和对应的能量曲线图, 图中红色曲线对应path 1上的扩散能垒; 绿色曲线对应path 2上的扩散能垒; 黑色曲线对应path 3上的扩散能垒 Figure9. Diffusion paths of Li on B, N doped graphyne and the corresponding energy curves. The red, green, black curves in the panels corresponds to the diffusion energy barrier on path 1, 2, 3, respectively.