全文HTML
--> --> -->近年来, 理论和实验工作者对类硼离子K壳层激发共振态的辐射跃迁光谱和俄歇电子谱开展了系列研究. 实验方面, 实验物理学家利用高能离子碰撞实验和束箔碰撞实验技术对B原子[5], C+[5,6], O3+[7], Ne5+[7—9]离子俄歇电子谱进行了测量, 报道了精确测量的俄歇电子谱线. 在K壳层激发态的辐射跃迁光谱实验中, Armour等[10,11]利用束箔实验技术测量了高离化Mg, Al, Si离子的X射线谱. Faenov[12]利用CO2激光等离子体实验测量了Mg, Al, Si, P, S离子的伴线波长, 其中部分谱线来源于类硼离子的K壳层激发共振态的辐射跃迁. 利用合并光子-离子束技术, Schlachter等[13]利用1s→2p内壳层光激发实验测量C+离子K壳层激发态(1s2s22p2、1s2s(3S)2p3)2,4L的线宽度和能级寿命. Gharaibeh等[14]测量了N2+离子K壳层激发光电离截面. Müller等[15,16]研究了C+离子K壳层电离区域附近的自电离过程, 分析了其单电子俄歇、双电子俄歇、三电子俄歇的自电离机制.
理论方面, Chen和Crasemann[17,18]利用MCDF-AL(multiconfiguration Dirac-Fock with average-level)方法系统计算了类硼等电子序列(Z = 6-54)离子K壳激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L的俄歇电子能量、俄歇跃迁率、X射线波长和跃迁强度. Safronova和Shlyaptseva[19]利用1/Z微扰理论计算了类硼等电子序列(Z = 6—54) K壳层激发态ls2s22pn, ls2s2pn, ls2pn (n = 1—3)的能级和自电离跃迁率. Zhou等[20]利用微扰理论计算了C+离子K壳层激发共振态1s2s22p2 2D, 2P的单电子俄歇、双电子俄歇和三电子俄歇跃迁率. 利用SCUNC (screening constant by unit nuclear charge) 模型, Sako等[21]计算了类B等电子序列 (Z = 5—18) 的K壳层激发共振态1s2p4 (2S, 2,4P, 2D)的X射线波长和俄歇电子能量. 目前, 人们对类硼离子的K壳层高激发共振态的能级、辐射跃迁和俄歇过程开展了相关研究, 得到了一些精确的理论和实验数据结果. 然而, 与类硼S离子K壳层激发共振态的相关报道还甚少. 理论上主要有MCDF方法[17,18]和1/Z微扰理论[19]对类硼S离子的K壳层激发共振态的能级、辐射光谱和俄歇跃迁数据进行了计算. 然而受限于早期的计算条件, 这些计算仅考虑了很少组态相互作用, 数据的精确度不够高.
在前期的工作中[22,23], 我们利用鞍点变分方法和鞍点复数转动方法对类硼离子K壳层激发共振态的辐射跃迁和俄歇跃迁开展了相关计算, 得到了较为精确的理论结果. 本文采用该方法对类硼S离子K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) 进行研究, 在本文计算过程中, 进一步考虑了QED(quantum electrodynamics)效应和高阶相对论的修正, 得到了精确的理论数据. 利用鞍点变分方法计算类硼S离子K壳层激发共振态的能级和波函数. 利用优化的波函数计算这些K壳层激发共振态的电偶极辐射跃迁线强度、振子强度、辐射跃迁率、跃迁波长. 利用鞍点复数转动方法计算这些K壳层激发共振态的俄歇跃迁率、俄歇分支率及俄歇电子能量. 本文计算结果与相关的实验理论数据进行对比, 符合较好.















在计算过程中, 为了防止遗漏重要的组态相互作用波函数, 本文利用截断变分方法计算了非相对论能量的修正值




随着核电荷数Z的增加, QED效应和高阶相对论效应修正变得愈发重要, 因此为了得到精确的能级数据, 本文利用屏蔽的类氢公式[25—27], 计算了类硼S11+离子K壳层激发共振态的QED效应和高阶相对论修正. 在QED效应计算中, 仅考虑了主要部分自能修正和真空极化修正效应. 对于ns电子, QED效应修正公式为
































































为了得到精确的相对论能量, 本文利用微扰理论, 计算了质量极化和相对论效应修正







表1列出了本文计算的类硼S离子的K壳层激发共振态权重中心的能级. 为便于对比, 表1还列出了这些K壳层激发共振态能量的绝对值(–Etotal, 单位eV). 对比文献[21]的SCUNC理论计算结果, 可以发现, 对于1s2p4 2, 4L激发态, 本文的理论计算结果与SCUNC理论值的均方根误差约为5.01 eV. 考虑电子自旋与轨道、自旋与其他轨道、自旋与自旋相互作用, 表2列出了类硼S离子K壳层激发共振态的精细结构劈裂能级. 对比文献[19]利用1/Z微扰理论的计算数据, 本文的计算结果与1/Z微扰理论的均方根误差约为3.28 eV. 相比SCUNC理论和1/Z微扰理论方法, 本文在计算过程中考虑了更多的组态相互作用和能量修正, 如QED和高阶相对论修正. 目前, 没有更多类硼S离子的K壳层激发共振态的能级数据可以对比, 因此需要更加精确的实验或理论数据来验证. 在研究类硼S离子K壳层激发共振态的辐射跃迁和俄歇跃迁中, 需要S11+离子低位激发态和S12+离子低位激发态的能级和波函数. 本文采用多组态Rayleigh-Ritz变分方法对它们进行了计算, 结果列于表2. 表2还列出了NIST (National Institute of Standards and Technology) 数据库[31]的实验数据, 对比发现, 本文的计算数据和NIST实验数据的均方根偏差仅为0.15 eV, 符合得非常好.
共振态 | ${E_{{\rm{nonrel}}}}/{\rm{a.u.}}$ | ${E_{{\rm{total}}}}/{\rm{a.u.}}$ | $ - {E_{{\rm{total}}}}/{\rm{eV}}$ | |||
${E_{\rm{b}}} + \Delta {E_{{\rm{RV}}}}$ | $\Delta {E_{{\rm{corr}}}}$ | $\Delta {E_{\rm{S}}}$ | 本文 | SCUNC[21] | ||
1s2s22p2 4P | –229.35389 | –0.64011 | –0.00245 | –229.99645 | 6258.52 | |
1s2s22p2 2S | –228.66774 | –0.66777 | –0.00174 | –229.33725 | 6240.58 | |
1s2s22p2 2P | –228.81110 | –0.66633 | –0.00089 | –229.47832 | 6244.42 | |
1s2s22p2 2D | –228.91613 | –0.67942 | 0.00322 | –229.59233 | 6247.52 | |
1s2s(3S)2p3 4So | –227.40768 | –0.60823 | 0.00018 | –228.01573 | 6204.62 | |
1s2s(1S)2p3 4So | –228.21123 | –0.62298 | 0.00151 | –228.83270 | 6226.85 | |
1s2s(3S)2p3 4Po | –228.00558 | –0.62215 | 0.00106 | –228.62667 | 6221.25 | |
1s2s(3S)2p3 4Do | –228.30315 | –0.62288 | –0.00017 | –228.92620 | 6229.40 | |
1s2s(3S)2p3 2So | –226.86291 | –0.62586 | 0.00070 | –227.48807 | 6190.26 | |
1s2s(3S)2p3 2Po | –226.91669 | –0.61114 | 0.00193 | –227.52590 | 6191.29 | |
1s2s(1S)2p3 2Po | –227.28245 | –0.61646 | 0.00620 | –227.89271 | 6201.28 | |
1s2s(3S)2p3 2Do | –227.21472 | –0.61330 | 0.00204 | –227.82598 | 6199.46 | |
1s2s(1S)2p3 2Do | –227.56290 | –0.62041 | 0.00280 | –228.18051 | 6209.11 | |
1s2p4 4P | –226.53817 | –0.55727 | –0.00249 | –227.09793 | 6179.65 | 6173.07 |
1s2p4 2S | –225.47488 | –0.56220 | 0.00072 | –226.03636 | 6150.76 | 6145.67 |
1s2p4 2P | –225.94003 | –0.56493 | 0.00251 | –226.50245 | 6163.44 | 6159.02 |
1s2p4 2D | –226.07283 | –0.56074 | 0.00279 | –226.63078 | 6166.94 | 6163.51 |
表1类硼S离子K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D)的权重中心能级(单位a.u.), 能量转化关系:1 a.u = 27.21138 eV
Table1.Center of gravity levels of 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) of K-shell excited resonance states in boron-like sulfur ion (unit: a.u.). The energy conversion relationship: 1 a.u = 27.21138 eV.
偶宇称 | 奇宇称 | ||||
S11+离子K壳层激发态共振态 | |||||
共振态 | 本文 | 文献[19] | 共振态 | 本文 | 文献[19] |
1s2s22p2 4P1/2 | 6259.50 | 6265.62 | 1s2s(3S)2p3 4S3/2 | 6204.62 | 6207.16 |
1s2s22p2 4P3/2 | 6258.83 | 6264.85 | 1s2s(1S)2p3 4S3/2 | 6226.85 | 6229.68 |
1s2s22p2 4P5/2 | 6257.99 | 6264.05 | 1s2s(3S)2p3 4P1/2 | 6221.05 | 6223.62 |
1s2s22p2 2S1/2 | 6240.58 | 6243.03 | 1s2s(3S)2p3 4P3/2 | 6221.24 | 6223.52 |
1s2s22p2 2P1/2 | 6245.72 | 6248.94 | 1s2s(3S)2p3 4P5/2 | 6221.32 | 6223.54 |
1s2s22p2 2P3/2 | 6243.77 | 6247.23 | 1s2s(3S)2p3 4D1/2 | 6229.21 | 6231.96 |
1s2s22p2 2D3/2 | 6247.38 | 6251.29 | 1s2s(3S)2p3 4D3/2 | 6229.21 | 6232.01 |
1s2s22p2 2D5/2 | 6247.62 | 6251.38 | 1s2s(3S)2p3 4D5/2 | 6229.30 | 6232.00 |
1s2p4 4P1/2 | 6178.53 | 6180.77 | 1s2s(3S)2p3 4D7/2 | 6229.61 | 6231.85 |
1s2p4 4P3/2 | 6179.12 | 6181.26 | 1s2s(3S)2p3 2S1/2 | 6190.26 | 6192.27 |
1s2p4 4P5/2 | 6180.37 | 6182.44 | 1s2s(3S)2p3 2P1/2 | 6191.17 | 6193.98 |
1s2p4 2S1/2 | 6150.76 | 6152.75 | 1s2s(3S)2p3 2P3/2 | 6191.36 | 6193.65 |
1s2p4 2P1/2 | 6163.28 | 6165.34 | 1s2s(1S)2p3 2P1/2 | 6201.72 | 6204.18 |
1s2p4 2P3/2 | 6163.52 | 6166.42 | 1s2s(1S)2p3 2P3/2 | 6201.05 | 6206.82 |
1s2p4 2D3/2 | 6166.83 | 6169.56 | 1s2s(3S)2p3 2D3/2 | 6199.29 | 6199.03 |
1s2p4 2D5/2 | 6167.00 | 6169.69 | 1s2s(3S)2p3 2D5/2 | 6199.57 | 6202.14 |
1s2s(1S)2p3 2D3/2 | 6209.23 | 6212.93 | |||
1s2s(1S)2p3 2D5/2 | 6209.03 | 6212.33 | |||
S11+离子低位激发态 | |||||
激发态 | 本文 | NIST[31] | 激发态 | 本文 | NIST[31] |
1s22s2p2 4P1/2 | 8617.38 | 8617.29 | 1s22s22p 2P1/2 | 8641.58 | 8641.33 |
1s22s2p2 4P3/2 | 8616.83 | 8616.70 | 1s22s22p 2P3/2 | 8639.78 | 8639.70 |
1s22s2p2 4P5/2 | 8615.98 | 8615.86 | 1s22p3 4S3/2 | 8565.71 | 8565.69 |
1s22s2p2 2S1/2 | 8586.78 | 8586.83 | 1s22p3 2P1/2 | 8545.44 | 8545.36 |
1s22s2p2 2P1/2 | 8584.06 | 8583.71 | 1s22p3 2P3/2 | 8545.42 | 8545.14 |
1s22s2p2 2P3/2 | 8582.99 | 8582.88 | 1s22p3 2D3/2 | 8555.97 | 8555.79 |
1s22s2p2 2D3/2 | 8598.49 | 8598.35 | 1s22p3 2D5/2 | 8555.74 | 8555.72 |
1s22s2p2 2D5/2 | 8598.39 | 8598.31 | |||
S12+离子低位激发态 | |||||
激发态 | 本文 | NIST[31] | 激发态 | 本文 | NIST[31] |
1s22s2 1S0 | 8076.99 | 8076.93 | 1s22s2p 1P1 | 8028.74 | 8028.63 |
1s22p2 1S0 | 7987.61 | 7987.44 | 1s22s2p 3P0 | 8052.36 | 8052.23 |
1s22p2 1D2 | 8004.12 | 8003.85 | 1s22s2p 3P1 | 8051.81 | 8051.70 |
1s22p2 3P0 | 8012.11 | 8012.06 | 1s22s2p 3P2 | 8050.64 | 8050.50 |
1s22p2 3P1 | 8011.53 | 8011.37 | |||
1s22p2 3P2 | 8010.43 | 8010.37 |
表2S11+离子K壳层激发共振态, S11+, S12+离子低位激发态的精细结构能级(

Table2.Fine-structure energy levels of the K-shell excited resonance states in S11+ ion, and low-excited states in S11+, S12+ ion (

表3给出了类硼S离子的K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的电偶极辐射跃迁线强度S, 辐射跃迁率





























初态 | 末态 | S/a.u. | ${A_{ik}}/{\rm{s}}^{-1}$ | ${f_{ki}}$ | λ/? | |||||||||
${A_{\rm{l}}}$ | ${A_{\rm{v}}}$ | ${A_{\rm{a}}}$ | 文献[17] | ${f_{\rm{l}}}$ | ${f_{\rm{v}}}$ | ${f_{\rm{a}}}$ | 本文 | 文献[17] | 文献[21] | |||||
1s2s22p2 4P | 1s22p3 4So | 5.06[–4] | 5.48[11] | 5.32[11] | 5.31[11] | 5.09[11] | 7.14[–3] | 6.94[–3] | 6.92[–3] | 5.374 | 5.379 | |||
1s2p4 4P | 1s22p3 4So | 2.14[–2] | 2.55[13] | 2.65[13] | 2.67[13] | 2.57[13] | 3.12[–1] | 3.23 [–1] | 3.26[–1] | 5.196 | 5.193 | 5.203 | ||
1s2s22p2 2S | 1s22s22p 2Po | 3.81[–3] | 2.78[13] | 2.82[13] | 2.80[13] | 2.93[13] | 3.72[–2] | 3.78[–2] | 3.76[–2] | 5.166 | 5.176 | 5.167 | ||
1s22p3 2Po | 1.78[–4] | 1.15[12] | 1.15[12] | 1.02[12] | 9.87[11] | 1.68[–3] | 1.67[–3] | 1.48[–3] | 5.379 | 5.383 | ||||
1s2s22p2 2P | 1s22s22p 2Po | 3.26[–2] | 7.88[13] | 7.87[13] | 7.84[13] | 7.53[13] | 3.18[–1] | 3.18[–1] | 3.17[–1] | 5.175 | 5.176 | |||
1s22p3 2Po | 1.80[–4] | 3.87[11] | 3.88[11] | 3.99[12] | 3.20[11] | 1.69[–3] | 1.69[–3] | 1.74[–3] | 5.388 | 5.392 | ||||
1s22p3 2Do | 6.30[–4] | 1.37[12] | 1.39[12] | 1.40[12] | 1.23[12] | 3.56[–3] | 3.61[–3] | 3.64[–3] | 5.364 | 5.368 | ||||
1s2s22p2 2D | 1s22s22p2Po | 1.92[–2] | 2.77[13] | 2.67[13] | 2.64[13] | 2.71[13] | 1.87[–1] | 1.80[–1] | 1.78[–1] | 5.181 | 5.183 | |||
1s22p3 2Po | 1.01[–4] | 1.29[11] | 1.28[11] | 1.45[11] | 1.35[11] | 9.43[–4] | 9.34[–4] | 1.06[–3] | 5.396 | 5.401 | ||||
1s22p3 2Do | 3.68[–4] | 7.98[11] | 8.18[11] | 8.25[11] | 7.74[11] | 3.46[–3] | 3.55[–3] | 3.59[–3] | 5.371 | 5.375 | ||||
1s2p4 2S | 1s22p3 2Po | 7.14[–3] | 5.17[13] | 5.26[13] | 5.28[13] | 5.13[13] | 6.96[–2] | 7.08[–2] | 7.11[–2] | 5.178 | 5.175 | 5.191 | ||
1s2p4 2P | 1s22p3 2Po | 1.75[–2] | 4.17[13] | 4.26[13] | 4.26[13] | 3.97[13] | 1.70[–1] | 1.74[–1] | 1.73[–1] | 5.205 | 5.205 | 5.217 | ||
1s22p3 2Do | 2.89[–2] | 6.97[13] | 6.80[13] | 6.71[13] | 6.17[13] | 1.69[–1] | 1.65[–1] | 1.63[–1] | 5.182 | 5.182 | 5.191 | |||
1s2p4 2D | 1s22s22p 2Po | 2.58[–4] | 4.09[11] | 4.42[11] | 4.14[11] | 2.59[–3] | 2.80[–3] | 2.62[–3] | 5.013 | |||||
1s22p3 2Po | 9.20[–3] | 1.30[13] | 1.32[13] | 1.33[13] | 1.32[13] | 8.91[–2] | 9.04[–2] | 9.11[–2] | 5.213 | 5.212 | 5.220 | |||
1s22p3 2Do | 2.74[–2] | 3.93[13] | 4.10[13] | 4.13[13] | 4.02[13] | 1.60[–1] | 1.67[–1] | 1.68[–1] | 5.190 | 5.189 | 5.198 | |||
1s2s(1S)2p3 4So | 1s22s2p2 4P | 3.08[–2] | 1.11[14] | 1.09[14] | 1.09[14] | 1.09[14] | 1.50[–1] | 1.48[–1] | 1.47[–1] | 5.188 | 5.189 | |||
1s2s(3S)2p3 4So | 1s22s2p2 4P | 7.57[–4] | 2.80[12] | 2.90[12] | 2.99[12] | 2.28[12] | 3.72[–3] | 3.85[–3] | 3.97[–3] | 5.141 | 5.135 | |||
1s2s(3S)2p3 4Po | 1s22s2p2 4P | 2.33[–2] | 2.81[13] | 2.79[13] | 2.80[13] | 2.67[13] | 1.14[–1] | 1.13[–1] | 1.13 [–1] | 5.176 | 5.174 | |||
1s2s(3S)2p3 4Do | 1s22s2p2 4P | 3.89[–2] | 2.79[13] | 2.78[13] | 2.77[13] | 2.63[13] | 1.89[–1] | 1.88[–1] | 1.88[–1] | 5.194 | 5.192 | |||
1s2s(3S)2p3 2So | 1s22s2p2 2P | 1.57[–2] | 1.13[14] | 1.13[14] | 1.13[14] | 8.54[13] | 1.53[–1] | 1.52[–1] | 1.52[–1] | 5.181 | 5.180 | |||
1s2s(1S)2p3 2Po | 1s22s2p2 2P | 1.05[–3] | 2.50[12] | 2.78[12] | 2.74[12] | 2.53[12] | 1.02[–2] | 1.13[–2] | 1.12[–2] | 5.205 | 5.208 | |||
1s22s2p2 2D | 1.71[–2] | 4.14[13] | 4.17[13] | 4.14[13] | 3.92[13] | 1.00[–1] | 1.01[–1] | 1.00[–1] | 5.172 | 5.173 | ||||
1s2s(3S)2p3 2Po | 1s22s2p2 2S | 1.59[–3] | 3.85[12] | 3.93[12] | 3.50[12] | 3.55[12] | 4.66[–2] | 4.76[–2] | 4.24[–2] | 5.176 | 5.174 | |||
1s22s2p2 2P | 1.00[–2] | 2.42[13] | 2.42[13] | 2.30[13] | 3.01[13] | 9.79[–2] | 9.79[–2] | 9.31[–2] | 5.183 | 5.183 | ||||
1s22s2p2 2D | 2.01[–3] | 4.95[12] | 4.92[12] | 5.19[12] | 3.38[12] | 1.18[–2] | 1.19[–2] | 1.25[–2] | 5.151 | 5.149 | ||||
1s2s(1S)2p3 2Do | 1s22s2p2 2P | 1.85[–3] | 2.60[12] | 2.64[12] | 2.64[12] | 2.19[12] | 1.79[–2] | 1.81[–2] | 1.81[–2] | 5.222 | 5.225 | |||
1s22s2p2 2D | 5.21[–2] | 7.49[13] | 7.54[13] | 7.55[13] | 7.13[13] | 3.04[–1] | 3.06[–1] | 3.07[–1] | 5.189 | 5.191 | ||||
1s2s(3S)2p3 2Do | 1s22s2p2 2P | 1.70[–2] | 2.43[13] | 2.49[13] | 2.50[13] | 2.40[13] | 1.65[–1] | 1.69[–1] | 1.70[–1] | 5.201 | 5.201 | |||
1s22s2p2 2D | 5.16[–3] | 7.51[12] | 7.72[12] | 7.83[12] | 7.84[12] | 3.02[–2] | 3.11[–2] | 3.15[–2] | 5.168 | 5.166 |
表3类硼S离子的K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的电偶极辐射跃迁线强度S (a.u.)、辐射跃迁率









Table3.Line strengths S (a.u.), radiative transition probabilities










Figure1. Comparison diagram of the calculated electrical dipole transition oscillator strength values in length gauge with the velocity gauge and acceleration gauge.

Figure2. Comparison diagram of calculated radiative transition rates in length gauge with the theoretical data from MCDF calculations.
俄歇跃迁过程起源于两个激发电子的库仑相互作用, 在类硼S离子K壳层激发共振态的俄歇跃迁过程中, 一个电子去填充K壳层的1s空位, 并且把多余的能量传递给另外一个电子, 通常情况下能量足够把电子离化, 因此接收能量的电子逃逸出系统成为自由电子, 剩余的系统为S12+离子低位激发态. 利用鞍点复数转动方法, 我们计算了类硼S离子的K壳层激发态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的俄歇跃迁率和俄歇分支率, 结果列于表4. 计算中主要考虑了以下六个末态: 1s22s2 1S, 1s22p2 1S, 1s22p2 1D, 1s22p2 3P, 1s22s2p 1P, 1s22s2p 3P, 其对应的能级列于表2. 对比表4中列出的MCDF理论[17]计算的俄歇跃迁率, 除1s2p4共振态外, 本文的计算结果与MCDF的理论计算数值符合的较好. 表5给出了计算的俄歇电子能量. 本文的计算结果与MCDF方法的理论值[17]约为1.97 eV, 整体上符合得较好. 在俄歇跃迁计算中, MCDF方法对于初态和末态仅采用了35个组态波函数和10个组态波函数. 在本文计算中, 对于初态和末态, 分别采用了4500和300个组态波函数. 由于考虑了更多的组态相互作用, 计算结果更为精确. 目前, 由于缺乏足够的实验和理论数据, 我们无法作出进一步的对比. 通过的俄歇分支率和俄歇电子能量可以更加清晰的了解类硼S离子K壳层激发共振态的俄歇跃迁过程, 综合利用这两者能够很好地对实验中的俄歇电子谱进行标定, 研究实验的动态反应过程. 本文的理论数据可为相关的实验提供有价值的理论数据.
俄歇跃迁通道 | 俄歇跃迁率/s–1 | BR/% | 俄歇跃迁通道 | 俄歇跃迁率/s–1 | BR(%) | ||||
本文 | 文献[17] | 本文 | 文献[17] | ||||||
1s2s22p2 | 2S →1s22s2 1S | 5.05[13] | 8.33[13] | 23.3 | 1s2s(1S)2p3 | 2Po→1s22s2 1S | 6.63[11] | 2.33[11] | 0.3 |
2S →1s22s2p 1Po | 6.35[13] | 6.02[13] | 29.3 | 2Po→1s22s2p 1Po | 1.18[12] | 1.46[13] | 0.5 | ||
2S →1s22s2p 3Po | 1.61[13] | 2.06[13] | 7.4 | 2Po→1s22s2p 3Po | 1.29[14] | 1.22[14] | 59.6 | ||
2S →1s22p2 1S | 7.10[13] | 7.85[13] | 32.8 | 2Po→1s22p2 1S | 6.50[12] | 5.20[12] | 3.0 | ||
2S →1s22p2 1D | 1.53[13] | 1.48[13] | 7.1 | 2Po→1s22p2 1D | 5.25[12] | 9.54[12] | 2.4 | ||
2P→1s22s2p 1Po | 1.82[13] | 2.55[13] | 14.7 | 2Po→1s22p2 3P | 7.40[13] | 7.54[13] | 34.2 | ||
2P→1s22s2p 3Po | 1.05[13] | 7.34[12] | 8.5 | 2Do→1s22s2p 1Po | 7.30[12] | 8.82[12] | 2.8 | ||
2P→1s22p2 1D2 | 1.97[10] | 7.42[12] | 0 | 2Do→1s22s2p 3Po | 1.74[14] | 1.74[14] | 66.1 | ||
2P→1s22p2 3P | 9.50[13] | 8.68[13] | 76.8 | 2Do→1s22p2 1D | 9.55[12] | 1.40[13] | 3.6 | ||
2D→1s22s2 1S | 1.24[14] | 1.14[14] | 40.3 | 2Do→1s22p2 3P | 7.25[13] | 7.66[13] | 27.5 | ||
2D→1s22s2p 1Po | 6.80[13] | 6.42[13] | 22.1 | 4So→1s22p2 3P | 3.85[13] | 3.88[13] | 100 | ||
2D→1s22s2p 3Po | 1.72[13] | 2.26[13] | 5.6 | 1s2s(3S)2p3 | 2So→1s22p2 3P | 6.55[13] | 4.35[13] | 100 | |
2D→1s22p2 1S | 3.43[12] | 2.82[12] | 1.1 | 2Po→1s22s2 1S | 4.33[12] | 2.67[12] | 1.6 | ||
2D→1s22p2 1D | 9.15[13] | 9.22[13] | 29.8 | 2Po→1s22s2p 1Po | 1.28[14] | 1.18[14] | 46.9 | ||
2D→1s22p2 3P | 3.37[12] | 4.47[12] | 1.1 | 2Po→1s22s2p 3Po | 5.40[12] | 7.38[12] | 2.0 | ||
4P→1s22s2p 3Po | 1.10[14] | 1.18[14] | 54.3 | 2Po→1s22p2 1S | 4.54[13] | 4.68[13] | 16.6 | ||
4P→1s22p2 3P | 9.25[13] | 9.48[13] | 45.7 | 2Po→1s22p2 1D | 6.40[13] | 6.23[13] | 23.4 | ||
1s2p4 | 2S →1s22s2 1S | 2.75[12] | 3.04[11] | 0.6 | 2Po→1s22p2 3P | 2.58[13] | 3.47[13] | 9.5 | |
2S →1s22s2p 1Po | 4.15[12] | 4.73[12] | 1.0 | 2Do→1s22s2p 1Po | 1.76[14] | 1.71[14] | 54.5 | ||
2S →1s22s2p 3Po | 8.57[11] | 1.48[12] | 0.2 | 2Do→1s22s2p 3Po | 6.85[12] | 1.16[13] | 2.1 | ||
2S →1s22p2 1S | 2.43[14] | 3.66[13] | 56.3 | 2Do→1s22p2 1D | 1.18[14] | 1.19[14] | 36.5 | ||
2S →1s22p2 1D | 1.81[14] | 1.87[14] | 41.9 | 2Do→1s22p2 3P | 2.22[13] | 1.99[13] | 6.9 | ||
2P→1s22s2p 1Po | 2.73[11] | 5.19[11] | 0.1 | 4So →1s22p2 3P | 1.92[14] | 2.02[14] | 100 | ||
2P→1s22s2p 3Po | 2.38[11] | 1.86[11] | 0.1 | 4Po→1s22s2p 3Po | 1.35[14] | 1.38[14] | 88.9 | ||
2P→1s22p2 1D2 | 6.95[10] | 2.06[13] | 0 | 4Po→1s22p2 3P | 1.68[13] | 1.45[13] | 11.1 | ||
2P→1s22p2 3P | 2.15[14] | 1.90[14] | 99.8 | 4Do→1s22s2p 3Po | 1.84[14] | 1.84[14] | 90.4 | ||
2D→1s22s2 1S | 2.95[12] | 7.35[9] | 1.0 | 4Do→1s22p2 3P | 1.96[13] | 1.41[13] | 9.6 | ||
2D→1s22s2p 1Po | 1.35[12] | 1.38[12] | 0.5 | ||||||
2D→1s22s2p 3Po | 2.73[11] | 4.54[11] | 0.1 | ||||||
2D→1s22p2 1S | 1.25[13] | 4.09[13] | 4.2 | ||||||
2D→1s22p2 1D | 2.68[14] | 2.74[14] | 90.6 | ||||||
2D→1s22p2 3P | 1.05[13] | 1.26[13] | 3.6 | ||||||
4P→1s22s2p 3Po | 1.96[12] | 2.50[12] | 0.9 | ||||||
4P→1s22p2 3P | 2.08[14] | 2.09[14] | 99.1 |
表4类硼S离子K壳层激发态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的俄歇跃迁率(s–1) 和俄歇分支率(BR), 方括号的数表示10的幂次方
Table4.The Auger rates (s–1) and branching ratios (BR) of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L=S, P, D) in boron-like sulfur ion. The numbers in square brackets represent the power of 10.
跃迁通道 | 本文 | 文献[17] | 跃迁通道 | 本文 | 文献[17] | ||
1s2s22p2 2S1/2 | 1s22s2 1S0 | 1836.41 | 1837.80 | 1s2s(3S)2p3 2S1/2 | 1s22p2 3P0 | 1821.85 | 1825.18 |
1s22s2p 1P1 | 1788.16 | 1787.75 | 1s22p2 3P1 | 1821.27 | 1824.50 | ||
1s22s2p 3P0 | 1811.78 | 1812.97 | 1s22p2 3P2 | 1820.17 | 1823.49 | ||
1s22s2p 3P1 | 1811.23 | 1812.44 | 1s2s(3S)2p3 2P1/2 | 1s22s2 1S0 | 1885.82 | 1888.35 | |
1s22s2p 3P2 | 1810.06 | 1811.23 | 1s22s2p 1P0 | 1837.57 | 1838.30 | ||
1s22p2 1S0 | 1747.03 | 1746.35 | 1s22s2p 3P1 | 1861.19 | 1863.52 | ||
1s22p2 1D2 | 1763.54 | 1763.33 | 1s22s2p 3P2 | 1860.64 | 1862.99 | ||
1s2s22p2 2P1/2 | 1s22s2p 1P1 | 1783.02 | 1782.25 | 1s22s2p 3P3 | 1859.47 | 1861.78 | |
1s22s2p 3P0 | 1806.64 | 1807.47 | 1s22p2 1S0 | 1796.44 | 1796.90 | ||
1s22s2p 3P1 | 1806.09 | 1806.94 | 1s22p2 1D2 | 1812.95 | 1813.88 | ||
1s22s2p 3P2 | 1804.92 | 1805.74 | 1s22p2 3P0 | 1820.94 | 1823.09 | ||
1s22p2 1D2 | 1758.40 | 1757.84 | 1s22p2 3P1 | 1820.36 | 1822.41 | ||
1s22p2 3P0 | 1766.39 | 1767.05 | 1s22p2 3P2 | 1819.26 | 1821.40 | ||
1s22p2 3P1 | 1765.81 | 1766.37 | 1s2s(3S)2p3 2P3/2 | 1s22s2 1S0 | 1885.63 | 1888.87 | |
1s22p2 3P2 | 1764.71 | 1765.36 | 1s22s2p 1P0 | 1837.38 | 1838.83 | ||
1s2s22p2 2P3/2 | 1s22s2p 1P1 | 1784.97 | 1784.03 | 1s22s2p 3P1 | 1861.00 | 1864.05 | |
1s22s2p 3P0 | 1808.59 | 1809.25 | 1s22s2p 3P2 | 1860.45 | 1863.51 | ||
1s22s2p 3P1 | 1808.04 | 1808.72 | 1s22s2p 3P3 | 1859.28 | 1862.31 | ||
1s22s2p 3P2 | 1806.87 | 1807.52 | 1s22p2 1S0 | 1796.25 | 1797.43 | ||
1s22p2 1D2 | 1760.35 | 1759.62 | 1s22p2 1D2 | 1812.76 | 1814.41 | ||
1s22p2 3P0 | 1768.34 | 1768.83 | 1s22p2 3P0 | 1820.75 | 1823.62 | ||
1s22p2 3P1 | 1767.76 | 1768.15 | 1s22p2 3P1 | 1820.17 | 1822.94 | ||
1s22p2 3P2 | 1766.66 | 1767.14 | 1s22p2 3P2 | 1819.07 | 1821.93 | ||
1s2s22p2 2D3/2 | 1s22s2 1S0 | 1829.61 | 1830.38 | 1s2s(1S)2p3 2P1/2 | 1s22s2 1S0 | 1875.27 | 1877.33 |
1s22s2p 1P1 | 1781.36 | 1780.34 | 1s22s2p 1P0 | 1827.02 | 1827.28 | ||
1s22s2p 3P0 | 1804.98 | 1805.56 | 1s22s2p 3P1 | 1850.64 | 1852.50 | ||
1s22s2p 3P1 | 1804.43 | 1805.02 | 1s22s2p 3P2 | 1850.09 | 1851.97 | ||
1s22s2p 3P2 | 1803.26 | 1803.82 | 1s22s2p 3P3 | 1848.92 | 1850.77 | ||
1s22p2 1S0 | 1740.23 | 1738.94 | 1s22p2 1S0 | 1785.89 | 1785.88 | ||
1s22p2 1D2 | 1756.74 | 1755.92 | 1s22p2 1D2 | 1802.40 | 1802.87 | ||
1s22p2 3P0 | 1764.73 | 1765.13 | 1s22p2 3P0 | 1810.39 | 1812.08 | ||
1s22p2 3P1 | 1764.15 | 1764.45 | 1s22p2 3P1 | 1809.81 | 1811.40 | ||
1s22p2 3P2 | 1763.05 | 1763.44 | 1s22p2 3P2 | 1808.71 | 1810.39 | ||
1s2s22p2 2D5/2 | 1s22s2 1S0 | 1829.37 | 1830.33 | 1s2s(1S)2p3 2P3/2 | 1s22s2 1S0 | 1875.94 | 1877.26 |
1s22s2p 1P1 | 1781.12 | 1780.29 | 1s22s2p 1P0 | 1827.69 | 1827.21 | ||
1s22s2p 3P0 | 1804.74 | 1805.51 | 1s22s2p 3P1 | 1851.31 | 1852.43 | ||
1s22s2p 3P1 | 1804.19 | 1804.97 | 1s22s2p 3P2 | 1850.76 | 1851.90 | ||
1s22s2p 3P2 | 1803.02 | 1803.77 | 1s22s2p 3P3 | 1849.59 | 1850.70 | ||
1s22p2 1S0 | 1739.99 | 1738.89 | 1s22p2 1S0 | 1786.56 | 1785.81 | ||
1s22p2 1D2 | 1756.50 | 1755.87 | 1s22p2 1D2 | 1803.07 | 1802.80 | ||
1s22p2 3P0 | 1764.49 | 1765.08 | 1s22p2 3P0 | 1811.06 | 1812.01 | ||
1s22p2 3P1 | 1763.91 | 1764.40 | 1s22p2 3P1 | 1810.48 | 1811.33 | ||
1s22p2 3P2 | 1762.81 | 1763.39 | 1s22p2 3P2 | 1809.38 | 1810.32 | ||
1s2p4 2S1/2 | 1s22s2 1S0 | 1926.23 | 1930.57 | 1s2s(3S)2p3 2D3/2 | 1s22s2p 1P0 | 1829.45 | 1831.14 |
1s22s2p 1P1 | 1877.98 | 1880.52 | 1s22s2p 3P0 | 1853.07 | 1856.36 | ||
1s22s2p 3P0 | 1901.60 | 1905.75 | 1s22s2p 3P1 | 1852.52 | 1855.83 | ||
1s22s2p 3P1 | 1901.05 | 1905.21 | 1s22s2p 3P2 | 1851.35 | 1854.62 | ||
1s22s2p 3P2 | 1899.88 | 1904.01 | 1s22p2 1D2 | 1804.83 | 1806.72 | ||
1s22p2 1S0 | 1836.85 | 1839.13 | 1s22p2 3P0 | 1812.82 | 1815.93 | ||
1s22p2 1D2 | 1853.36 | 1856.11 | 1s22p2 3P1 | 1812.24 | 1815.25 | ||
1s2p4 2P1/2 | 1s22s2p 1P1 | 1865.46 | 1867.17 | 1s22p2 3P2 | 1811.14 | 1814.24 | |
1s22s2p 3P0 | 1889.08 | 1892.39 | 1s2s(3S)2p3 2D5/2 | 1s22s2p 1P0 | 1829.17 | 1830.60 | |
1s22s2p 3P1 | 1888.53 | 1891.86 | 1s22s2p 3P0 | 1852.79 | 1855.82 | ||
1s22s2p 3P2 | 1887.36 | 1890.66 | 1s22s2p 3P1 | 1852.24 | 1855.28 | ||
1s22p2 1D2 | 1840.84 | 1842.76 | 1s22s2p 3P2 | 1851.07 | 1854.08 | ||
1s22p2 3P0 | 1848.83 | 1851.97 | 1s22p2 1D2 | 1804.55 | 1806.18 | ||
1s22p2 3P1 | 1848.25 | 1851.29 | 1s22p2 3P0 | 1812.54 | 1815.39 | ||
1s22p2 3P2 | 1847.15 | 1850.28 | 1s22p2 3P1 | 1811.96 | 1814.71 | ||
1s2p4 2P3/2 | 1s22s2p 1P1 | 1865.22 | 1866.27 | 1s22p2 3P2 | 1810.86 | 1813.70 | |
1s22s2p 3P0 | 1888.84 | 1891.50 | 1s2s(1S)2p3 2D3/2 | 1s22s2p 1P0 | 1819.51 | 1819.23 | |
1s22s2p 3P1 | 1888.29 | 1890.96 | 1s22s2p 3P0 | 1843.13 | 1844.45 | ||
1s22s2p 3P2 | 1887.12 | 1889.76 | 1s22s2p 3P1 | 1842.58 | 1843.92 | ||
1s22p2 1D2 | 1840.60 | 1841.86 | 1s22s2p 3P2 | 1841.41 | 1842.71 | ||
1s22p2 3P0 | 1848.59 | 1851.07 | 1s22p2 1D2 | 1794.89 | 1794.81 | ||
1s22p2 3P1 | 1848.01 | 1850.39 | 1s22p2 3P0 | 1802.88 | 1804.02 | ||
1s22p2 3P2 | 1846.91 | 1849.38 | 1s22p2 3P1 | 1802.30 | 1803.35 | ||
1s2p4 2D3/2 | 1s22s2 1S0 | 1910.16 | 1913.47 | 1s22p2 3P2 | 1801.20 | 1802.33 | |
1s22s2p 1P1 | 1861.91 | 1863.42 | 1s2s(1S)2p3 2D5/2 | 1s22s2p 1P0 | 1819.71 | 1819.38 | |
1s22s2p 3P0 | 1885.53 | 1888.64 | 1s22s2p 3P0 | 1843.33 | 1844.60 | ||
1s22s2p 3P1 | 1884.98 | 1888.11 | 1s22s2p 3P1 | 1842.78 | 1844.07 | ||
1s22s2p 3P2 | 1883.81 | 1886.91 | 1s22s2p 3P2 | 1841.61 | 1842.86 | ||
1s22p2 1S0 | 1820.78 | 1822.02 | 1s22p2 1D2 | 1795.09 | 1794.96 | ||
1s22p2 1D2 | 1837.29 | 1839.01 | 1s22p2 3P0 | 1803.08 | 1804.17 | ||
1s22p2 3P0 | 1845.28 | 1848.22 | 1s22p2 3P1 | 1802.50 | 1803.50 | ||
1s22p2 3P1 | 1844.70 | 1847.54 | 1s22p2 3P2 | 1801.40 | 1802.49 | ||
1s22p2 3P2 | 1843.60 | 1846.53 | 1s2s(3S)2p3 4S3/2 | 1s22p2 3P0 | 1807.49 | 1810.50 | |
1s2p4 2D5/2 | 1s22s2 1S0 | 1909.99 | 1913.40 | 1s22p2 3P1 | 1806.91 | 1809.82 | |
1s22s2p 1P1 | 1861.74 | 1863.35 | 1s22p2 3P2 | 1805.81 | 1808.81 | ||
1s22s2p 3P0 | 1885.36 | 1888.57 | 1s2s(1S)2p3 4S3/2 | 1s22p2 3P0 | 1785.26 | 1785.14 | |
1s22s2p 3P1 | 1884.81 | 1888.04 | 1s22p2 3P1 | 1784.68 | 1784.46 | ||
1s22s2p 3P2 | 1883.64 | 1886.84 | 1s22p2 3P2 | 1783.58 | 1783.45 | ||
1s22p2 1S0 | 1820.61 | 1821.95 | 1s2s(3S)2p 3 4P1/2 | 1s22s2p 3P0 | 1831.31 | 1832.66 | |
1s22p2 1D2 | 1837.12 | 1838.94 | 1s22s2p 3P1 | 1830.76 | 1832.13 | ||
1s22p2 3P0 | 1845.11 | 1848.15 | 1s22s2p 3P2 | 1829.59 | 1830.93 | ||
1s22p2 3P1 | 1844.53 | 1847.47 | 1s22p2 3P0 | 1791.06 | 1792.24 | ||
1s22p2 3P2 | 1843.43 | 1846.46 | 1s22p2 3P1 | 1790.48 | 1791.56 | ||
1s2s22p2 4P1/2 | 1s22s2p 3P0 | 1792.86 | 1791.05 | 1s22p2 3P2 | 1789.38 | 1790.55 | |
1s22s2p 3P1 | 1792.31 | 1790.51 | 1s2s(3S)2p3 4P3/2 | 1s22s2p 3P0 | 1831.12 | 1832.56 | |
1s22s2p 3P2 | 1791.14 | 1789.31 | 1s22s2p 3P1 | 1830.57 | 1832.03 | ||
1s22p2 3P0 | 1752.61 | 1750.62 | 1s22s2p 3P2 | 1829.40 | 1830.83 | ||
1s22p2 3P1 | 1752.03 | 1749.94 | 1s22p2 3P0 | 1790.87 | 1792.14 | ||
1s22p2 3P2 | 1750.93 | 1748.93 | 1s22p2 3P1 | 1790.29 | 1791.46 | ||
1s2s22p2 4P3/2 | 1s22s2p 3P0 | 1793.53 | 1791.83 | 1s22p2 3P2 | 1789.19 | 1790.45 | |
1s22s2p 3P1 | 1792.98 | 1791.30 | 1s2s(3S)2p3 4P5/2 | 1s22s2p 3P0 | 1831.04 | 1832.48 | |
1s22s2p 3P2 | 1791.81 | 1790.09 | 1s22s2p 3P1 | 1830.49 | 1831.95 | ||
1s22p2 3P0 | 1753.28 | 1751.40 | 1s22s2p 3P2 | 1829.32 | 1830.75 | ||
1s22p2 3P1 | 1752.70 | 1750.72 | 1s22p2 3P0 | 1790.79 | 1792.06 | ||
1s22p2 3P2 | 1751.60 | 1749.71 | 1s22p2 3P1 | 1790.21 | 1791.38 | ||
1s2s22p2 4P5/2 | 1s22s2p 3P0 | 1794.37 | 1792.66 | 1s22p2 3P2 | 1789.11 | 1790.37 | |
1s22s2p 3P1 | 1793.82 | 1792.13 | 1s2s(3S)2p3 4D1/2 | 1s22s2p 3P0 | 1823.15 | 1824.54 | |
1s22s2p 3P2 | 1792.65 | 1790.92 | 1s22s2p 3P1 | 1822.60 | 1824.01 | ||
1s22p2 3P0 | 1754.12 | 1752.23 | 1s22s2p 3P2 | 1821.43 | 1822.80 | ||
1s22p2 3P1 | 1753.54 | 1751.55 | 1s22p2 3P0 | 1782.90 | 1784.11 | ||
1s22p2 3P2 | 1752.44 | 1750.54 | 1s22p2 3P1 | 1782.32 | 1783.43 | ||
1s2p4 4P1/2 | 1s22s2p 3P0 | 1873.83 | 1876.31 | 1s22p2 3P2 | 1781.22 | 1782.42 | |
1s22s2p 3P1 | 1873.28 | 1875.78 | 1s2s(3S)2p3 4D3/2 | 1s22s2p 3P0 | 1823.15 | 1824.49 | |
1s22s2p 3P2 | 1872.11 | 1874.57 | 1s22s2p 3P1 | 1822.60 | 1823.96 | ||
1s22p2 3P0 | 1833.58 | 1835.88 | 1s22s2p 3P2 | 1821.43 | 1822.75 | ||
1s22p2 3P1 | 1833.00 | 1835.20 | 1s22p2 3P0 | 1782.90 | 1784.06 | ||
1s22p2 3P2 | 1831.90 | 1834.19 | 1s22p2 3P1 | 1782.32 | 1783.39 | ||
1s2p4 4P3/2 | 1s22s2p 3P0 | 1873.24 | 1875.77 | 1s22p2 3P2 | 1781.22 | 1782.38 | |
1s22s2p 3P1 | 1872.69 | 1875.24 | 1s2s(3S)2p3 4D5/2 | 1s22s2p 3P0 | 1823.06 | 1824.41 | |
1s22s2p 3P2 | 1871.52 | 1874.03 | 1s22s2p 3P1 | 1822.51 | 1823.88 | ||
1s22p2 3P0 | 1832.99 | 1835.34 | 1s22s2p 3P2 | 1821.34 | 1822.67 | ||
1s22p2 3P1 | 1832.41 | 1834.66 | 1s22p2 3P0 | 1782.81 | 1783.98 | ||
1s22p2 3P2 | 1831.31 | 1833.65 | 1s22p2 3P1 | 1782.23 | 1783.30 | ||
1s2p4 4P5/2 | 1s22s2p 3P0 | 1871.99 | 1874.50 | 1s22p2 3P2 | 1781.13 | 1782.29 | |
1s22s2p 3P1 | 1871.44 | 1873.96 | 1s2s(3S)2p3 4D7/2 | 1s22s2p 3P1 | 1822.20 | 1823.70 | |
1s22s2p 3P2 | 1870.27 | 1872.76 | 1s22s2p 3P2 | 1821.03 | 1822.50 | ||
1s22p2 3P0 | 1831.74 | 1834.07 | 1s22p2 3P1 | 1781.92 | 1783.13 | ||
1s22p2 3P1 | 1831.16 | 1833.39 | 1s22p2 3P2 | 1780.82 | 1782.12 | ||
1s22p2 3P2 | 1830.06 | 1832.38 |
表5类硼S离子K壳层激发态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的俄歇电子能量(单位: eV)
Table5.The Auger electron energies of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) in boron-like sulfur ion (unit: eV).