1.Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.Rocket Force Academy, Beijing 100101, China 4.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 71705255).
Received Date:31 March 2019
Accepted Date:21 May 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:The ternary compound aluminum gallium arsenide is an important material that can be used in all-optical solid-state ultrafast diagnostic technology. The low-temperature-epitaxially-grown AlGaAs (LT-AlGaAs) not only has the characteristics of ultra-short carrier lifetime of low-temperature-grown gallium arsenide (LT-GaAs), but also possesses the advantage of adjustability of band gap, which will provide great flexibility for the design of ultra-fast diagnostic systems. We use low-temperature epitaxial growth technology to grow AlGaAs on a GaAs substrate. The low-temperature-grown AlGaAs can effectively absorb 400 nm pump light to generate excess carrier. Therefore, we use a femtosecond laser with a wavelength of 800 nm and a pulse width of 200 fs as a light source to generate 400-nm pump light after passing through the BBO crystal, and 800 nm light without frequency doubling as the probe light. Using such a light source, we build a pump probe experimental platform to test the LT-AlGaAs. We normalize the experimental results and deconvolute it with the normalized laser pulses to obtain the response function of the semiconductor to the pump light. Therefore, we know that the nonequilibrium carrier relaxation time is less than 300 fs, and the nonequilibrium carrier recombination time is 2.08 ps. Due to the special passivation process, the effect of surface recombination on the carrier decay process is greatly reduced. The As clusters introduced by low-temperature epitaxial growth form deep level defects are the main factor for accelerating carrier recombination. In order to understand the complex process of photogenerated nonequilibrium carriers in depth, we use the indirect recombination theory of single recombination center to calculate the carrier recombination process, and establish an LT-AlGaAs carrier evolution model. Thus we obtain the key physical parameter related to the recombination rate, which is the carrier trapping area. We also use a theoretical model of carrier-regulated refractive index to calculate the effect of carrier concentration on the amount of change in refractive index. Combining our AlGaAs carrier evolution model, we simulate the refractive index change process of LT-AlGaAs after being illuminated by pump light. The simulation results are in good agreement with the experimental results. The method can be used for the quantitative analysis of carrier evolution characteristics of semiconductor materials, and it can conduce to the optimization and improvement of ultra-fast response semiconductor materials. Keywords:photorefractive effect/ AlGaAs/ pump-probe/ carrier lifetime
表4电子与空穴的俘获系数和发射系数 Table4.Capture and emission coefficients of electrons and holes.
根据泵浦光的相关性质得到I(r,t), 并将表4中的参量以及NT和Nt的值代入(12)式中, 获得在泵浦光入射前后载流子浓度随时间的演化规律. 其中载流子浓度上升沿的时间常数τup = 0.4 ps, 该时间与实验时折射率的初始改变时间(0.44 ps)相当. 由于(12)式中的I(r, t)是基于实验条件给出的, 因此载流子上升时间是由泵浦光的脉宽、非平衡载流子弛豫时间决定. 非平衡载流子弛豫时间在200 fs左右, 泵浦光脉宽为200 fs, 因此载流子上升时间应在400 fs左右, 这基本上与实验结果中440 fs初始变化过程相符. 基于实验条件的I(r, t), 理论上将产生的载流子总浓度Ns = 3.65 × 1018 cm–3, 而由于激发过程实际伴随着复合, 达到幅值时载流子浓度要略小于该值. 模拟计算还得到载流子复合时间约为2.1 ps, 这与实验结果的2.08 ps相符. 此外, 模拟计算结果(图5)显示, 激发过程中电子浓度与空穴浓度的变化是一致的, 但在载流子复合阶段, 电子浓度下降速率要略大于空穴浓度下降速率, 反映出复合中心对电子与空穴不同的俘获能力. 图 5 基于带激励项的SRH过程的载流子浓度变化模型的计算结果 Figure5. Calculation results of carrier concentration variation model based on SRH process with excitation term.
23.4.超快光诱导折射率变化规律 -->
3.4.超快光诱导折射率变化规律
将图5中载流子浓度变化规律代入3.3.1节载流子浓度与折射率变化量的关系模型中, 即可模拟实验条件下折射率随泵浦-探测光延迟时间的变化规律, 将其与实验数据进行对比, 如图6所示. 图 6 泵浦-探测反射实验数据和基于光诱导折射率超快变化模型计算结果 Figure6. Experimental data and calculation results based on light-induced refractive index ultrafast change model.
图6中实验数据与模拟计算结果的对比表明, 理论计算中在泵浦光激发后折射率初始变化与恢复阶段都与实验结果拟合得较好. 为了确认该模型的准确性, 对同一材料进行二次实验, 仅改变泵浦光的单脉冲能量至1.5 nJ, 其他实验条件均保持不变. 根据泵浦光的单脉冲信号能量, 修改理论模型中的I(r, t), 其他参量不变. 将泵浦光的单脉冲能量为1.5 nJ的结果与2 nJ的结果进行对比, 如图7所示. 结果表明, 该参数模型能够有效模拟LT-AlGaAs在不同泵浦光功率下的折射率变化规律. 图 7 两次实验与模拟计算的结果对比 Figure7. Comparison of results between two experiments and simulation calculations.