Abstract:The existence of robust conducting edge states is one of the most prominent properties of topological insulator, which is often simply illustrated as a consequence of bulk-boundary correspondence. Then here arises a new question whether similar robust edge states appear in some other topological-trivial systems, or rather, given a general answer of fundamental mathematics such as harmonic analysis or K-theory to this problem, we study one-dimensional two-tile lattices and show that the robust edge states can exist in topological-trivial complex lattices. Under the tight-binding approximation, all kinds of one-dimensional two-tile lattices with staggered hopping matrix elements can be described by the Su-Schrieffer-Heeger model or the Rice-Mele model, depending on their site energy. The site energy values of the Su-Schrieffer-Heeger model are equal, and often assumed to be zero, and the Rice-Mele model is constructed to describe the one-dimensional two-tile lattices having two different site energy values. With the help of the generalized Bloch theorem, the eigen-state problem of electrons in one-dimensional two-tile complex lattices are solved systematically, and the analytical expressions for the wavefunctions of the edge states in the corresponding finite lattice are obtained. The numerical and analytical results show that the edge states can also emerge in any of one-dimensional two-tile lattices beyond the Su-Schrieffer-Heeger lattice, i.e., provided that the magnitude of intracell hopping is less than the intercell hopping, a pair of edge states can also emerge in Rice-Mele lattice. Unlike the Su-Schrieffer-Heeger edge states, the two Rice-Mele edge states are locally distributed at one end of the finite lattice: one at the left and another one at right. The Zak phase is a topological invariant of the Su-Schrieffer-Heeger model, but it is no longer invariant for the Rice-Mele model because of the breaking of spatial inversion symmetry, and therefore the Rice-Mele lattices are topologically trivial. However, the Rice-Mele edge states are also robust to the non-diagonal disorder of the lattice. In addition, it is proven that the winding number can provide a general criterion for the existence of a couple of edge states in any one-dimensional two-tile lattice whether it is the Su-Schrieffer-Heeger lattice or not. These results lead to a conclusion that the topological invariant is not necessary for the robust edge states to occur. Keywords:topological insulator/ edge state/ winding number
其中E为能量本征值; ${\varepsilon _\alpha }$表示格点α的座能量, 对A和B两种不同原子, 可以分别取不同的数值${\varepsilon _{\rm{A}}}$和${\varepsilon _{\rm{B}}}$; ${t_{\alpha \beta }}$标记电子由格点α到格点β的跃迁矩阵元; ${\varphi _\alpha }$是电子波函数, α遍历所有格点, 对β的求和只包含格点α的左右最近邻. 不失一般性, A和B原子的座能量可设为${\varepsilon _{\rm{A}}} = V = - {\varepsilon _{\rm{B}}}$; 跃迁矩阵元取正实数, 原胞内和原胞间最近邻原子的跃迁矩阵元分别记作${t_v}$和${t_w}$, 如图1(a)所示; 为简单起见, 以原胞尺寸为长度单位, 即相邻的两个同类原子的间距为$1$. 所以一维二元复式晶格的紧束缚近似总是简化为R-M模型[26]; 特别地, 当A和B原子的座能量相同, 即$V = 0$时, 退化为SSH模型[25]. 图 1 (a) R-M紧束缚模型, ${t_v}$和${t_w}$分别表示原胞内和原胞间电子的跃迁矩阵元; (b), (c)分别为无限SSH晶格和R-M晶格的电子能谱; 蓝色实线和红色点线分别取 ${t_v} = {t_w} = 1$和${t_v} = 0.8$, ${t_w} = 1.2$, R-M晶格$V = 0.2$; (d), (e)分别展示包含15个原胞的有限SSH晶格和R-M晶格的能量本征值随跃迁矩阵元的变化, ${t_v} = 1 + \cos \theta $, ${t_w} = 1 - \cos \theta $; 当${t_v} < {t_w}$时, 两者都涌现出一对边缘态 Figure1. (a) Schematic diagram of tight-bonding R-M model, ${t_v}$ and ${t_w}$ denote the intracellular and intercellular hopping elements, respectively; (b) and (c) are energy spectrum of electron in infinite SSH model and R-M model, where the solid blue lines are drawn for ${t_v} = \;{t_w} = 1$, and the red dot line for ${t_v} = 0.8$, ${t_w} = 1.2$, and $V = 0.2$ for R-M model; (d) and (e) shown the eigen energies of electron in finite (15 cells) SSH lattice and R-M lattice varying with the hopping elements, ${t_v} = 1 + \cos \theta $, ${t_w} = 1 - \cos \theta $; for both of them, a couple of edge states emerge when ${t_v} < {t_w}$.
其中$D_{ - {\rm{i}}\alpha }^ \pm $为归一化常数. 类似地研究$k = \pm {\rm{i}}\alpha $的情形, 不难证明它们不能叠加形成有限晶格中满足自然边条件(11)式的能量本征态. 作为对比, 图1(d)和图1(e)分别展示了有限SSH晶格($V = 0$)和R-M晶格($V = 0.2$)中电子的能量本征值随原胞内跃迁矩阵元${t_v}$和原胞间跃迁矩阵元${t_w}$的变化方式. 为图中曲线不要过分密集, 晶格只包含了15个完整原胞, 仅30个原子. 注意到这个二能带结构取决于两个跃迁矩阵元的比值${{{t_v}} /{{t_w}}}$, 可采用一个参量$0 \leqslant \theta \leqslant {\text{π}}$描述全部可能情形, 即${t_v} = 1 + \cos \theta $, ${t_w} = 1 - \cos \theta $. 值得关注的是, 无论是SSH拓扑晶格还是反演对称性破缺的R-M拓扑平庸晶格, 当$\theta $变化跨越$\theta = {{\text{π}} / 2}$的临界点都涌现一对边缘态, 即在射线${t_v} = {t_w}$将${t_v} - \;{t_w}$平面分割为不同的两相, 若$0 \leqslant {t_v} < {t_w}$则存在边缘态, 若$0 \leqslant {t_w} < {t_v}$则无边缘态. 图2进一步给出了有限R-M晶格中典型能量本征态波函数的数值计算结果, 它们与根据推广的布洛赫定理求得的解析解完全吻合. 图 2 一维二元有限晶格的边缘态(其中30个原胞数包含60个格点, 参数取$\theta \; = \;0.58{\text{π}}$, 即${t_v} = 0.75,$${t_w} = 1.25$)(a)有限SSH晶格$V = 0$, 两个边缘态都同时出现在晶格的两端, 它们的本征能量都逼近于零; (b) 有限R-M晶格$V=0.2$, 红色空心圆和蓝色实心圆点分别表示逼近上能带底和下能带顶两个边缘态, 分别局域在晶格的左右端 Figure2. Edge states of electron in one-dimensional two-tile finite lattice; the parameters are taken as 30 cells (60 atoms), $\theta \; = \;0.58{\text{π}}$, i.e. ${t_v} = 0.75,$${t_w} = 1.25$: (a) $V = \;0$ for SSH lattice, the eigen-energy values of the two edge states approach to zero, and each of the edge states appears at two ends of the lattice; (b) $V = 0.2$ for R-M lattice, the red hollow circles stand for the edge state near the upper band, the blue solid dot for the edge state near the lower band; one of them is localized at the left end, and the other at the right end.
拓扑稳定性是边缘态的重要性质. 考虑杂质或无序对电子态的影响和改变, 是检验其鲁棒性的简单方法. 注意到一维二元有限晶格总可以涌现一对边缘态, 有必要比较杂质或无序对SSH边缘态和R-M边缘态的不同影响. 系统的非对角无序表现在跃迁矩阵元受到随机调制, 即${t_v} \to {t_v}\left( {1 + \underline \xi } \right)$, ${t_w} \to {t_w}\left( {1 + \underline \xi } \right)$, 其中$\underline \xi $表示在区间$\left[ { - \xi ,\;\xi } \right]$的随机数. 图4显示了有关边缘态鲁棒性的典型结果. 与图1对比, 图4(a)和图4(b)分别展示了幅度$\xi = 0.5$的非对角无序对包含15个原胞30个格点的有限SSH晶格和R-M晶格的影响. 虽然$V = 0.2$导致R-M晶格反演对称性破缺, 但是无序对它的能量本征值的影响与对相应的SSH能量本征值的影响并无二致. 与图2对比, 图4还展示了非对角无序对包含30个原胞60个格点的有限SSH晶格和R-M晶格两类边缘态的影响. 不难发现, 非对角无序对边缘态的影响都是微弱的, 而且R-M边缘态也具有SSH边缘态对非对角无序同样的鲁棒性. 图 4 非对角无序对能谱和边缘态的影响(非对角无序的幅度为$\xi = 0.5$, 跃迁矩阵元${t_v} = 0.75$, ${t_w} = 1.25$) (a), (b)分别是包含15个原胞的有限SSH晶格和R-M晶格的能谱; (c), (d)分别是包含30个原胞的有限SSH晶格和R-M晶格的边缘态 Figure4. Effects of non-diagonal disorder on the energy spectrum and the edge states. The strength of the off-diagonal disorder is taken of $\xi \; = \;{\rm{0.5}}$, hopping elements ${t_v} = 0.75$, ${t_w} = 1.25$. Panels (a) and (b) present the spectrums of finite SSH lattice and R-M lattice consist of 15 unit cells, respectively; (c) and (d) show the edge states of electron in the finite SSH lattice and the R-M lattice of 30 unit cells.