1.College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China 2.Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China 3.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 4.Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61805134, 11504216, 61527824, 61675119) and the Applied Basic Research Program in Shanxi Province, China (Grant No. 201801D221016).
Received Date:13 March 2019
Accepted Date:11 April 2019
Available Online:01 June 2019
Published Online:20 June 2019
Abstract:The dipole orientation of single-molecule plays an important role in improving the fluorescence collection efficiency and promises to have applications in super-resolution imaging, protein folding, and F?rster resonance energy transfer between fluorophores. However, these applications are realized usually by precisely manipulating the orientation of the dipole moment of single molecules. Here, the dipole orientation of 1,1′-dioctadecyl-3,3,3′,3′,-tetramethylindodicarbocyanine (DiD) single molecules with the permanent dipole moment of 14.9 D is manipulated by using an external electric field of 3500 V/mm. Single DiD molecules are prepared by using mixed solvent of chloroform and dimethyl sulfoxide. The dipole orientation of single molecules is manipulated by an external electric field during the evaporation of solvent. The fluorescence of single molecules is measured by splitting the fluorescence collected by an objective into the S-polarized and P-polarized beams, and the fluorescence polarization of single molecules can be calculated by measuring the intensities of two orthogonal channels (IS and IP). The distribution of dipole orientation angle (α) for single DiD molecules in poly-(methyl methacrylate) (PMMA) film is analyzed statistically, and its changes are compared under different electric fields. It is found that the dipole orientation angle α of single DiD molecules in the PMMA film without applying electric field obeys a single-peak Gaussian distribution with the most probable value of 41°, which results from the fluorescence dichroism signal of the high numerical aperture objective. Applying a perpendicular electric field to the surface of single-molecule sample, the distribution of dipole orientation angle α of single DiD molecules can be still fitted by a single-peak Gaussian function with the most probable value of 44.2°. The dipole orientation of single DiD molecules under the perpendicular electric field changes little. However, by applying a parallel electric field to the surface of single-molecule sample, the dipole orientation angle α of single DiD molecules changes prominently. It obeys a two-peak Gaussian distribution with the most probable values of ~ 32° and 55.5°, indicating that the orientation polarization of the dipole moment occurs to the single DiD molecules in PMMA film. The dipole orientation of single polar molecules tends to the parallel electric field in this case. Keywords:single molecule/ dipole orientation/ electric field manipulation/ polarization property
全文HTML
--> --> -->
3.结果与讨论在共聚焦荧光成像系统上通过逐点扫描的方式对单分子样品进行荧光成像, 实验中每个像素点的采样时间是10 ms. 图2(a)显示了掺杂在PMMA聚合物薄膜中未通过电场作用时DiD分子在18 μm × 18 μm (100像素 × 100像素)区域里的分布, 每个亮点来自不同DiD分子的荧光. 由于单分子所处的纳米局部环境及单分子偶极取向的差异, 使得每个单分子的荧光强度略有不同. 为了获取单分子荧光偏振方向的信息, 在得到分子荧光成像后, 通过三维纳米位移平台将单个DiD分子移动到激光聚焦区域, 测量单个分子在S偏振和P偏振方向上荧光强度随时间的变化. 图 2 DiD单分子的偶极取向与偏振测量 (a)在18 μm × 18 μm区域内DiD单分子的荧光成像; (b)任意偶极取向的DiD单分子的S偏振及P偏振方向荧光探测示意图, 其中Obj是物镜, PBS是偏振分束棱镜; (c)成像图(a)中红色圆圈标记的DiD分子的S和P偏振方向的荧光强度轨迹图; (d)荧光偏振方向α随时间的变化; (e) DiD分子光漂白前荧光偏振方向的统计, 最可几值为48.8° Figure2. Fluorescence measurement of single DiD molecules: (a) Fluorescence image of single DiD molecules in 18 μm × 18 μm area; (b) schematic view of the S-polarized and P-polarized fluorescence of arbitrary dipole moment for single-molecule (Obj, objective; PBS, polarized beam splitter); (c) fluorescence trajectories of single DiD molecule indicated by the red circle in panel (a) in S and P polarization; (d) the relationship between fluorescence polarization and time; (e) the statistics of fluorescence polarization with the most probable value being 48.8°.
式中, θ和α与图2(a)一致; A, B, C是由高数值孔径物镜引入的与角度无关的常数, 可能引起所测量偏振方向的并不是均匀随机分布[25]. 对未经取向极化的DiD单分子而言, 其荧光偏振方向α分布呈现出以41°为中心的高斯分布. 外电场作用于单分子引起其能量的变化[26]可以简写为
$\Delta E = \mu \times {F_{{\rm{ext}}}} \times \sin \delta ,$
其中δ是单分子的偶极取向与外电场方向的夹角. 在外电场的作用下, 单分子的偶极取向会逐渐偏向于电场的方向(δ → 0), 这就是对单分子产生取向极化的过程. 电场强度越大, δ越小, 单分子偶极取向极化的偏转角度Δδ与电场强度有关[27]. 电场方向与单分子的偶极取向之间存在三种情况, 如图4所示, 其中红色箭头是分子的偶极取向. 第一种情况如图4(a): 外电场与分子偶极取向平行(δ = 0或180°), 电场并不会改变分子的偶极取向. 第二种情况如图4(b): 外电场方向与偶极取向垂直(δ = 90°), 两个偶极取向的分子等量地向电场方向偏转, 如图中蓝色箭头所示, 此时分子偶极取向的变化Δδ是一致的. 图4(a)和图4(b)中极少部分特殊偶极取向的分子并不会引起偏振方向α的双峰分布. 除了上述两种特殊情况外, 绝大部分随机分布的分子偶极取向与电场方向夹角如图4(c): 在与电场方向夹角δ较小的单分子被完全取向极化前, 两个分子还是等量地趋向电场方向. 由于夹角δ较小的单分子更容易偏转到电场方向, 而夹角δ 较大的单分子要想与电场方向一致还需要更强的电场, 在这种情况下, 两个分子的偶极取向极化过程不同, 存在两个夹角δ, 导致如图3(c)中平行电场作用下单分子偶极取向的双峰分布现象. 当垂直于x-y平面电场作用于单分子时, 电场主要改变的是分子偶极矩的θ角, 不会影响单分子偶极取向在x-y平面的投影角度, 也就是与光轴垂直平面的单分子的荧光偏振取向α分布, 所以垂直于单分子样品平面电场作用下单分子偶极取向分布基本不变. 当平行电场作用于单分子时, 引起分子的荧光偏振方向的双峰分布. 这也说明了电场并没有使得所有的DiD单分子的偶极取向与电场方向完全一致. 图 4 单分子偶极取向在外电场作用下的极化示意图 (a) 电场方向与分子偶极取向同向; (b) 电场方向垂直于单分子偶极取向; (c)电场作用于任意取向单分子 Figure4. Simplified scheme of the polarization of the dipole orientation of single-molecule under the influence of external electric field. The directions of the electric field are parallel (a), perpendicular (b), and arbitrary (c) to the dipole orientation of single-molecule, respectively.