Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11575002).
Received Date:13 December 2018
Accepted Date:25 February 2019
Available Online:01 May 2019
Published Online:05 May 2019
Abstract:Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green’s function is introduced under the complex momentum representation, so the complex momentum representation-Green’s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work, we mainly study the p-wave scattering with the orbital angular momentum l = 1, where P1/2 is a wide resonance state and P3/2 is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system. By comparison, we can see that the theoretical calculation results and experimental data are in good consistence. Keywords:complex momentum representation-Green’s function/ resonant states/ scattering phase shift/ cross section
借助图1和图2中的能量数据, 根据(8)式, 得到P态CLD图像, 如图3和图4所示. 减掉背景项之后, 从图3和图4可知, CLD出现了共振峰, 共振峰在横轴上的投影所对应的能量代表着该共振态的实部能量, 图中标注的两交点之间的距离即CLD的半高宽, 代表该共振态的宽度. 图 3 在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{3/2}$态CLD Figure3. CLD of the $\rm P_{3/2}$ state under four different integral paths calculated by CMR-GF method.
图 4 在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{1/2}$态CLD Figure4. CLD of the $\rm P_{1/2}$ state under four different integral paths calculated by CMR-GF method.
相对于宽共振$ {\rm{P}}_{1/2} $态, 窄共振$ {\rm{P}}_{3/2} $共振峰更明显、尖锐. 变换四种不同的积分路径, 可以看到共振峰位置和宽度并没有改变, CLD共振峰对积分路径不具有依赖性, 与文献[2]中数据具有很好的一致性. 借助CLD图像, 通过共振峰宽度和尖锐程度, 可以更直观地判断$ {\rm{P}}_{1/2} $是一个宽共振, 而$ {\rm{P}}_{3/2} $态是一个窄共振, 相对窄共振$ {\rm{P}}_{3/2} $态, $ {\rm{P}}_{1/2} $态有着更短的寿命. 为进一步验证图3和图4结果的准确度, 根据(9)式得到了n-α系统P波散射相移, 如图5和图6所示. 图中分别用红色长虚线、蓝色短虚线、黑实线描绘了共振态、连续谱和P态总相移, P态总相移是共振相移和连续谱相移之和, 同时与实验数据以及R矩阵理论结果进行比较, 对比发现三者具有很好的一致性. 图 5 n-α散射系统的${\rm{P}}_{1/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移) Figure5. The ${\rm{P}}_{1/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.
图 6 n-α散射系统的${\rm{P}}_{3/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移) Figure6. The ${\rm{P}}_{3/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.