Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Fund Project:Project supported by the National Key Program of Research and Development (Grant Nos. 2018YFB0703902, 2016YFB0700503) and the National Natural Science Foundation of China (Grant Nos. 51631002, 51425101).
Received Date:10 January 2019
Accepted Date:19 February 2019
Available Online:23 March 2019
Published Online:05 April 2019
Abstract:In a tungsten-based alloy system, the appropriate solute elements are selected to produce strong segregation effect to reduce the interfacial formation energy, which can effectively improve the mechanical property and thermal stability of the system. Based on the first principles calculation, the solute segregation model of tungsten-based alloys is constructed. The W-In alloy is taken for example to study the grain boundary segregation behavior and bonding characteristics of solute at different concentrations. The bonding of the W-In system is revealed from the electronic structure, and the variation of the interface stability of the W-In system with the solute concentration is predicted. Based on the electronic structure analysis of bond population, differential charge density and density of states, the bond transition characteristics of solute atoms in the W-In system in the segregation process are found, and the microscopic mechanism of the W-In bond transitioning from the ionic bond inside the grain to the strong covalent bond in the grain boundary region is elucidated: the difference between the grain boundary and the intragranular structure leads to a decrease in the valence state of the W atom in the grain boundary and the oxidizability is weakened, eventually leading to the W-In bond transition. The non-monotonic variation of the intrinsic segregation energy of the solute with the concentration of In in the W-In system is obtained. The mechanism of the influence of solute concentration on the intrinsic segregation energy is revealed by analyzing the bond interaction and energy: the solute concentration remarkably affects the bond strength before and after the W-In bond segregation, resulting in a significant decrease in the segregation ability when the solute concentration is close to 0.0976, and finally the variation of the segregation energy with solute concentration is obtained. Based on the analysis of the phase mechanical stability and the solute segregation in the grain boundary, without considering the vacancy concentration, the optimal solute concentration range and the range that needs to be circumvented in the W-In alloy system with high thermal stability are predicted by the calculations of the model, which are 0.106?0.125 and 0.0632?0.106, respectively. This study provides theoretical basis and quantitative guidance for designing and preparing the tungsten-based alloy materials with high thermal stability. Keywords:first-principles calculations/ tungsten alloy/ solute segregation/ thermal stability
布居分析可得到电子在晶体内的分布情况, 量化键合作用的类型和强度, 同时能够为体系基态性质提供更多细节信息. 通常认为键布居数越接近0, 键的离子性越强; 反之越偏离0, 共价性越强. W-In体系晶粒内部和晶界区域的部分Mulliken键布居计算结果如图2所示. 图 2 不同溶质浓度下晶内和晶界区域的W—In键Mulliken布居分析 (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122 Figure2. Mulliken population analysis of W—In bond at grain interior and grain boundary at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122.
通过图2对比晶内区域和晶界区域的W— In键布居值可以发现, 在不同溶质浓度下, In原子由晶粒内部偏聚到晶界区域的过程中, 均发生了明显的键性变化: W—In键由离子键转变为共价键. 为了进一步探究W-In体系的键性转变现象, 接下来通过电荷密度图、差分电荷密度图和态密度图对键性转变现象进行系统的分析. 图3展示了不同溶质浓度下W-In体系的电荷密度和差分电荷密度. 如图3左图所示, 不同溶质浓度下界面处W—In键之间的电荷密度均小于晶内区域W—In键之间的电荷密度, 体现出与键布居结果相悖的电荷密度分布特征. 上述分析表明, 电荷密度没有反映出晶界W—In键的共价键特征. 其主要原因是: 在晶内区域, 原子排布有序, In原子掺杂之后, 与周围W原子的平均成键距离略短于界面区域W—In键的平均成键距离, 不同区域W—In键键长差异, 使得界面区域W—In键之间的电荷密度分布相比晶内区域W—In键的电荷密度分布可能略低, 二者对比分析导致界面W—In键的共价特征不明显. 为了排除电荷密度分析中晶内和晶界区域W—In键键长对键性分析的干扰, 进一步采用差分电荷密度对键性进行了分析, 以避免单纯通过电荷密度分析体系键性所导致的结果误判. 图 3 不同溶质浓度下W-In界面特性的电荷密度和差分电荷密度 (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122 Figure3. Charge density and charge density difference of W-In interface characteristics at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122
不同溶质浓度下的差分电荷密度图如图3右侧图所示. 差分电荷密度相比电荷密度, 反映的不是电荷聚集的程度, 而是电荷转移情况, 因此即便键长变化导致电荷密度变化, 但共价键(电子共用)和离子键(电子转移)的本质差异仍可以体现. 对应于电荷密度, 对不同的界面模型进行了差分电荷密度进行了计算, 结果如图3右侧图所示, 其中蓝色代表缺失电子, 红色代表富集电子, 白色代表不变. 通过观察晶内区域和晶界区域的差分电荷密度图可以发现, 在不同溶质浓度下, 晶内区域W—In键对应的W和In原子之间为白色, 表明二者之间不存在电子共用情况, 即不体现共价键的特性; 而在晶界区域, 构成W—In键的W原子和In原子之间呈现红色, 表明二者之间之间存在共用电子现象, 体现共价键特性. 通过上述分析, 采用差分电荷密度图可以明显区分晶内区域和晶界区域的W—In键的键性差异. 为了进一步研究键性变化, 对成键原子的态密度进行分析, 结果如图4所示. 我们可以发现晶界区域W原子和In原子偏态密度(PDOS)的共振强度明显高于晶粒内部, 表明在晶界区域形成共价键. 共价键的形成使得更容易产生强的偏聚效果, 使晶界能大大降低, 提高稳定性. 图 4 不同溶质浓度晶内和晶界区域W和In原子的PDOS (a) xA = 0.0488; (b) xA = 0.122 Figure4. PDOS of W and In atoms at grain interior and grain boundary at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.122
基于不同溶质浓度下的偏聚模型, 得到了多类界面偏聚位点下偏聚能随溶质浓度的变化关系, 如图5所示. 图 5 不同位点下偏聚能随溶质浓度的变化关系 Figure5. Segregation energy as a function of solute concentration corresponding to different sites.
由图5可以发现, 随着溶质浓度的增加, 偏聚能呈非单调变化的规律, 表明溶质偏聚能力随溶质浓度的增加先减弱再增强, 存在极值规律. 在极值点之前, 随溶质浓度的增加, 偏聚能趋于零, 表明其偏聚能力快速衰减; 但是随着溶质浓度的进一步增加, 超过极值点对应的浓度时, 体系偏聚能力显著提升. 根据经典理论, 通常认为偏聚能低于–0.5 eV的体系为强偏聚体系[33], 由图5可知, 当溶质浓度大于0.0976时, W-In体系再次成为典型的强偏聚体系. 为了分析偏聚能随溶质浓度变化的极值规律, 进一步对偏聚前后W-In体系的电子结构进行了分析. 如图6所示, 极值点所对应的溶质浓度为0.0976时, 偏聚前后体系中W和In原子的PDOS存在类似的共振关系, 说明此时In原子在晶内和晶界处与W原子的成键差异较小, In原子并不具有较强的晶界偏聚趋势. 进一步地, PDOS同时反映了W-In体系偏聚前后体系的形成能. 较小的PDOS差异说明W-In体系在该浓度点下偏聚前后的形成能差异较小. 形成能[34]可描述为 图 6 溶质浓度为0.0976时溶质偏聚前后体系晶内和晶界区域W和In原子PDOS Figure6. PDOS of W and In atoms at grain interior and grain boundary before and after segregation at solute concentration of 0.0976.