1. 安徽工业大学环境工程系,安徽 马鞍山 2430002. 教育部生物膜法水质净化及利用技术工程研究中心,安徽 马鞍山 243000
收稿日期:
2019-03-11修回日期:
2019-06-27出版日期:
2020-02-22发布日期:
2020-02-19通讯作者:
陈娇玉基金资助:
安徽高校自然科学研究重点项目;2017年度高校优秀骨干青年人才国内外访学研修项目Performance and mechanism of ozonation of bisphenol A
Jiaoyu CHEN1, Guanhua MENG 1,2*, Wang WEI1, Baohe LIU1, Suyun DING1, Jiarui HE11. School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243000, China2. Ministry of Education Biofilm Process Water Purification and Utilization Technology Engineering Research Center, Ma'anshan, Anhui 243000, China
Received:
2019-03-11Revised:
2019-06-27Online:
2020-02-22Published:
2020-02-19摘要/Abstract
摘要: 采用臭氧氧化法在动态条件下降解双酚A,考察了臭氧浓度、水样进水流速、pH、双酚A初始浓度及温度对氧化降解双酚A效果的影响,探究了臭氧氧化双酚A的反应机理。结果表明,臭氧对溶于水中的双酚A具有良好的去除效果,在反应条件(臭氧浓度11.04 mg/L、水样进水流速2 mL/min、原水pH=6.83、双酚A初始浓度10 mg/L、温度40℃)下,去除率达86.12%。增加臭氧浓度或适当升高温度可增加臭氧氧化双酚A去除率。pH和进水流速的提高会降低双酚A去除率。偏酸性条件下,臭氧降解双酚A的效果更好。臭氧氧化双酚A反应活化能较低,属于快速反应。臭氧浓度不变,增加双酚A初始浓度会使其去除率减小。臭氧氧化双酚A以臭氧直接氧化为主,同时也存在羟基自由基间接氧化。
引用本文
陈娇玉 孟冠华 魏旺 刘宝河 丁素云 何佳睿. 臭氧氧化双酚A的性能及机理[J]. 过程工程学报, 2020, 20(2): 230-236.
Jiaoyu CHEN Guanhua MENG Wang WEI Baohe LIU Suyun DING Jiarui HE. Performance and mechanism of ozonation of bisphenol A[J]. Chin. J. Process Eng., 2020, 20(2): 230-236.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219165
http://www.jproeng.com/CN/Y2020/V20/I2/230
参考文献
[1]Cydzik-Kwiatkowska A, Bernat K, Zielińska, Magdalena, et al.Aerobic granular sludge for bisphenol A (BPA) removal from wastewater[J]. International Biodeterioration & Biodegradation, 2017, 122:1-11. [2]陈云峰, 杨志宝, 柳延峰, 赵泽军, 张桂华.双酚的生产及市场情况分析[J].化学工业, 2018, 36(03):42-47 [3]Toner F, Allan G, Beyer D, et al.In vitro percutaneous absorption and metabolism of bisphenol A (BPA) through fresh human skin[J]. Toxicology in Vitro, 2018, 47:14 -155. [4]Huang Y Q, Wong C K C, Zheng J S, et al.Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts[J]. Environment International, 2012, 42:0-99. [5]Desai M, Ferrini M G, Han G, et al.In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators[J]. Environmental Research, 2018, 164:45-52. [6]Elmetwally M A, Halawa A A, Lenis Y Y, et al.Effects of BPA on of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy[J]. Reproductive Toxicology, 2019, 83:73–79. [7]Bhatnagar A, Anastopoulos I .Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review[J]. Chemosphere, 2017, 168:885-902. [8]王婧.分子印迹磁性吸附材料的制备及其吸附双酚A的效能[D].黑龙江:哈尔滨工业大学, 2017. [9]顾雍.生物降解及过硫酸盐氧化去除典型酚类有机污染物的研究[D].上海:华东理工大学, 2018. [10]Chong M N, Sharma A K, Burn S, et al.Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment[J]. Journal of Cleaner Production, 2012, 35:230-238. [11]Mansouri L, Tizaoui C, Geissen S, et al..A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363:401–411 [12]Liao G, Zhu D, Zheng J, et al.Efficient mineralization of bisphenol A by photocatalytic ozonation with TiO2–graphene hybrid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67:300-305. [13]Keykavoos R, Mankidy R, Ma H, et al.Mineralization of bisphenol A by catalytic ozonation over alumina[J]. Separation and Purification Technology, 2013, 107:310-317. [14]Lai Y, Yang L Y .Research Progress of Water Treatment by Advanced Oxidation Technology[J]. Advanced Materials Research, 2013, 864-867:2096-2099. [15]Mansouri L, Tizaoui C, Geissen S, et al..A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363:401–411. [16]Sharma A, Ahmad J, Flora S J S.Application of advanced oxidation processes and toxicity assessment of transformation products[J].International Journal of Molecular Sciences, 2017, 18(12):2555- [17]Garoma T, Matsumoto S.Ozonation of aqueous solution containing bisphenol A: Effect of operational parameters[J].Journal of Hazardous Materials, 2009, 167(1-3):1185-1191 [18]Ebrahiem E E, Al-Maghrabi M N, Mobarki A R.Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology[J].Arabian Journal of Chemistry, 2013, 35(S2):1-13 [19]Dietrich M, Franke M, Stelter M, et al.Degradation of endocrine disruptor Bisphenol A by ultrasound-assisted electrochemical oxidation in water[J]. Ultrasonics Sonochemistry, 2017, 39:741-749. [20]张凌, 陶莹, 常志显, 李德亮.臭氧法降解水中对甲基苯磺酸的动力学研究[J].环境科学学报, 2011, 31(10):2185-2191 [21]吴光国, 谢勇冰, 邢林林.改性活性炭强化催化臭氧氧化降解草酸[J].过程工程学报, 2012, 12(4):684-689 [22]谢兆倩, 刘晨.臭氧氧化降解水中双酚的研究[J].山东化工, 2018, 47(11):190-192 |
相关文章 15
[1] | 尹德峰 田运 郑艳霞 左村村 葛亭亭 李玉超 黄昊飞 傅忠君. 氧化酯化反应催化剂的研究进展[J]. 过程工程学报, 2019, 19(5): 932-939. |
[2] | 曹俊雅 张凯伦 李媛媛 张广积. 臭氧氧化合成臭葱石除砷[J]. 过程工程学报, 2018, 18(3): 517-521. |
[3] | 李正军 刘齐齐 王诗生 盛广宏 王萍 徐亚楠. 壳聚糖碳化改性凹凸棒石对Cr(Ⅵ)的吸附性能[J]. 过程工程学报, 2017, 17(2): 263-270. |
[4] | 秦月娇 焦纬洲 杨鹏飞 刘有智. 强化臭氧传质的研究进展[J]. 过程工程学报, 2017, 17(2): 420-426. |
[5] | 刘成龙夏举佩李宛霖周新涛. 基于微波固相法与ChemOffice软件研究煤矸石中铁铝浸出机理[J]. 过程工程学报, 2016, 16(1): 115-119. |
[6] | 张人元刘中清王琴张强马雪阳刘维燥梁斌李春. 磷酸中臭氧催化氧化除氯[J]. , 2015, 15(1): 106-110. |
[7] | 李明春张进曲彦平吴玉胜. 煅烧石灰石孔结构演变特性及有效扩散系数[J]. , 2014, 14(5): 816-822. |
[8] | 李天昕刘祥萱吴世玲谷为民UWIZEYIMANA Herman. 基于最佳氧化还原电位的O3-H2O2氧化法处理高浓度含锰废水[J]. , 2014, 14(2): 234-240. |
[9] | 吴光国谢勇冰邢林林曹宏斌. 改性活性炭强化催化臭氧氧化降解草酸[J]. , 2012, 12(4): 684-689. |
[10] | 孙德财张聚伟赵义军刘云义余剑许光文. 粉煤气化条件下不同粒径半焦的表征与气化动力学[J]. , 2012, 12(1): 68-74. |
[11] | 胡大成高加俭贾春苗平原贾丽华王莹利许光文古芳娜苏发兵. 甲烷化催化剂及反应机理的研究进展[J]. , 2011, 11(5): 880-893. |
[12] | 杜淄川李会泉包炜军李少鹏蔡卫权. 高铝粉煤灰碱溶脱硅过程反应机理[J]. , 2011, 11(3): 442-447. |
[13] | 曹苏王铁峰. 基于详细反应机理的甲烷部分氧化制乙炔过程模拟[J]. , 2009, 9(5): 940-946. |
[14] | 陈永强邱定蕃王成彦尹飞. 闪锌矿常压富氧浸出[J]. , 2009, 9(3): 441-448. |
[15] | 王景平李翔牛育华. 膜电极产生臭氧的工作时间特性[J]. , 2008, 8(2): 404-408. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3388