1. 安徽工业大学冶金工程学院,安徽 马鞍山 2430022. 冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 2430023. 中国钢研科技集团有限公司钢铁研究总院,北京 100081
收稿日期:
2019-02-01修回日期:
2019-04-16出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
周小宾基金资助:
高芳烃高含氮重油催化转化反应基础研究Influence of steel scrap on the mixing of converter bath
Yong LIU1,2, Nanyang DENG1, Xiaobin ZHOU1,2*, Duogang WANG3, Shiheng PENG1,21. School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China2. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Ma'anshan, Anhui 243002, China3. Central Iron and Steel Research Institute, China Iron and Steel Research Institute Group, Beijing 100081, China
Received:
2019-02-01Revised:
2019-04-16Online:
2019-12-22Published:
2019-12-22Contact:
Xiaobin 无ZHOU 摘要/Abstract
摘要: 采用物理模拟研究某炼钢厂250 t转炉冶炼过程中废钢加入量、分布方式和轻重废钢对熔池搅拌混匀的影响。结果表明,轻废钢和重废钢对熔池混匀影响不同,加入轻废钢,熔池混匀时间随废钢量增加而增加,底吹流量为50 L/min时,加入20和60 t废钢熔池混匀时间分别比无废钢时上升48.60%和134.70%。加入重废钢时,废钢在熔池中的分布方式会影响熔池钢液流动,从而影响熔池混匀时间。重废钢在炉底集中分布时,熔池混匀时间随废钢量增加而增加,随底吹气体流量增加而降低。过量底吹气体可能对熔池搅拌有负面影响,底吹流量大于40 L/min时,熔池混匀时间上升。熔池均匀分布时,熔池混匀时间受废钢加入量和底吹气体流量影响。底吹气体流量为25 L/min、重废钢均匀分布时,熔池混匀时间在废钢加入量为40 t和60 t时比20 t时分别降低30.13%和12.93%。废钢倾侧分布时,形成了熔池中非对称搅拌,增加了熔池水平横向流动,一定程度上有利于熔池混匀。相同供气量(25 L/min)下,40 t废钢均匀分布和倾侧分布的混匀时间比集中分布时分别低38.87%和41.01%。
引用本文
刘勇 邓南阳 周小宾 王多刚 彭世恒. 废钢对转炉熔池混匀过程的影响[J]. 过程工程学报, 2019, 19(6): 1178-1185.
Yong LIU Nanyang DENG Xiaobin ZHOU Duogang WANG Shiheng PENG. Influence of steel scrap on the mixing of converter bath[J]. Chin. J. Process Eng., 2019, 19(6): 1178-1185.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219133
http://www.jproeng.com/CN/Y2019/V19/I6/1178
参考文献
[1]郭达清.废钢资源开发利用是需要从长计议的大事[N]. 中国冶金报, 2018-05-04(001). [2]郭艳.抓住机遇提升转型推进废钢铁产业高质绿色发展记第十一届中国金属循环应用国际研讨会暨中国废钢铁应用协会六届三次会员大会举行[J].资源再生, 2018, (04):64-67 [3]Vikas SINGH, Jyoti KUMAR.Optimisation of the Bottom Tuyeres Configuration for the BOF Vessel Using Physical and Mathematical Modelling[J].ISIJ International, 2007, 47(11):1605-1612 [4]Shiv Kumar CHOUDHARY and Satish Kumar AJMANI.Evaluation of Bottom Stirring System in BOF Steelmaking Vessel Using Cold Model Study and Thermodynamic Analysis[J].ISIJ International, 2006, 46(8):1171-1176 [5]杨文远, 张先贵, 杨勇, 刘路长, 高卫涛.转炉炼钢利用废钢的研究综述[J].中国冶金, 2012, 22(02):1-6 [6]杨文远, 张先贵, 王明林, 高卫涛, 崔怀周, 白宇.转炉熔池中废钢的运动[J].钢铁, 2013, 48(03):24-29 [7]曾兴富, 钟良才, 朱英雄.复吹转炉底枪布置优化探讨[J].炼钢, 2008, (04):52-55 [8]Zhong Liangcai Chen Junrying, LeiZhelong, et al.Physical modeling and opti mization of bottom tuyere configuration and blowing parameters in a top and bottom combined blowing converter[J].Developments in Chem ical Engineering andM ineral Processing, 2006, 14(34):343-352 [9]S K A jmani and A Chatterjee.Coldmodel study of mixing and mass transfer in LD converters at Tata Steel[J].Ironmaking & Steel making, 1996, 23(4):335-345 [10]Tatjana S, Klaus K.Bottom blowing investigations on a cold model reactor to optimize mixing behavior in metallurgical process[J].Steel Research, 2002, 73(9):373-373 [11]FiegeL, Schiel V, Schrode H, et al.Influence of bottom purging on the metallurgical results achieved in the LD steelmaking plants of Krupp Stahl AG[J].Stahl and Eisen, 1983, 103(4):159-159 [12]温良英,陈登福,董凌燕,等.复吹转炉不同冶炼时期熔池行为的水模拟研究[J].钢铁研究学报, 2006, 18(6):14-14 [13]Lou Wentao, Zhu Miaoyong.Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles[J].Metallurgical and Materials Transactions B, 2013, 44(3):762-782 [14]Lou Wentao, Zhu Miaoyong.Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics–Simultaneous Reaction Model (CFD–SRM) Coupled Model[J].Metallurgical and Materials Transactions B, 2014, 45(5):1706-1722 [15]Chu, Kuan-Yu Chen, Hsing-Hao Lai, Po-Han Wu, Hsuan-Chung Liu, Yung-Chang Lin, Chi-Cheng Lu, Muh-Jung.The Effects of Bottom Blowing Gas Flow Rate Distribution During the Steelmaking Converter Process on Mixing Efficiency[J].Metallurgical and Materials Transactions B, 2016, 47(2):948-962 [16]Hans-Jürgen Odenthal, Udo Falkenreck.Jochen Schlüter.CFD simulation of multiphase melt flows in steelmaking converters[C].European Conference on Computational Fluid Dynamics [17]LCao, Y.Wang, Q. Liu, X. Feng, . Physical and Mathematical Modeling of Multiphase Flows in a Converter[J].ISIJ International, 2018, 58:573-584 [18]刘越生,高金平,张建波,邢栋,韩哗,邓国昌.氧气复吹操作制度下废钢熔化特点的水模型实验研究[J].钢铁研究学报, 1990, 2(4):1-7 [19]刘越生, 高金平, 韩晔, 邓国昌.水模型实验中用冰块模拟废钢熔化过程的理论解析计算[J].钢铁研究学报, 1992, 4(1):15-21 [20]Kruskopf, Ari.A Model for Scrap Melting in Steel Converter[J].Metallurgical and Materials Transactions B, 2015, 46(3):1195-1206 [21]Shukla AK, Deo B, Robertson DGC.Scrap Dissolution in Molten Iron Containing Carbon for the Case of Coupled Heat and Mass Transfer Control[J].Metallurgical and Materials Transactions B, 2013, 44(6):1407-1427 [22]Li Jianghua,Provatas Nikolas.Kinetics of Scrap Melting in Liquid Steel: Multipiece Scrap Melting[J].Metallurgical and Materials Transactions B, 2008, 39(2):268-279 [23]Kruskopf, Ari.A Model for Scrap Melting in Steel Converter[J].Metallurgical and Materials Transactions B, 2015, 46(3):1195-1206 [24]沈颐身,李保卫,吴懋林 .冶金传输原理[M]. 北京:冶金工业出版社,2000, 133-147.. |
相关文章 11
[1] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[2] | 王多刚 程乃良 周小宾. 250吨转炉底吹对熔池搅拌的影响研究[J]. 过程工程学报, 2020, 20(6): 678-686. |
[3] | 张彩军孙学玉史敬培刘涛朱立光. 矩形钢坯结晶器浸入式水口结构设计与优化[J]. , 2013, 13(3): 361-367. |
[4] | 贾皓张振强吴吉文常同旭邓康任忠鸣. 板坯连铸电磁制动下结晶器内金属流场的研究[J]. , 2012, 12(5): 721-727. |
[5] | 贾皓张振强常同旭邓康任忠鸣. 板坯连铸中电磁制动方式对结晶器中钢液流场的影响[J]. , 2012, 12(4): 550-557. |
[6] | 刘燕张廷安赵秋月李冲王洪星章俊冯乃祥. 新型阴极结构铝电解槽的物理数学模拟[J]. , 2011, 11(5): 721-728. |
[7] | 陈敏廖广府李光强袁纲肖尊湖苏风光. 210 t顶底复吹转炉水模型实验研究[J]. , 2011, 11(1): 36-39. |
[8] | 罗志国刘洪华邹宗树周渝生. 利用颗粒速度标量场确定风口回旋区边界[J]. , 2009, 9(2): 228-232. |
[9] | 王德永;闵义;刘承军;史培阳;姜茂发. 利用CO-CO2-H2混合气体生产碳化铁的实验研究[J]. , 2007, 7(2): 332-336. |
[10] | 郑淑国;朱苗勇. 多流连铸中间包各流流动特性一致性的判别[J]. , 2006, 6(4): 522-526. |
[11] | 雷洪;朱苗勇;赫冀成. 连铸结晶器漩涡现象的物理模拟[J]. , 2001, 1(1): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3367