1. 中国矿业大学(北京)化学与环境工程学院,北京 100083
2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
3. 中国石油大学(北京)重质油国家重点实验室,北京 102249
4. 中国科学院大学化学与化工学院,北京 100049
5. 核工业西南物理研究院,四川 成都 610041
收稿日期:
2019-01-11修回日期:
2019-03-01出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
刘晓星基金资助:
国家自然科学基金委员会与中国工程物理研究院联合基金资助;国家重点研发计划Discrete simulation of influence of drum end-wall on axial mixing behavior of granular material
Quanxun HOU1,2, Shijie DONG2,3, Quan ZHANG5, Yongjin FENG5, Xiaoyu WANG5, Xiaoxing LIU2,4*1. School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
2. State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
4. College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
5. Southwest Institute of Physics, Nuclear Industry, Chengdu, Sichuan 610041, China
Received:
2019-01-11Revised:
2019-03-01Online:
2019-10-22Published:
2019-10-22Contact:
LIU Xiao-xing Supported by:
National Natural Science Foundation of China and the China Academy of Engineering Physics摘要/Abstract
摘要: 基于离散单元法模拟了仅颜色存在差异的两组分颗粒物料在轴径比0.3的窄滚筒中的轴向混合过程,滚筒的左侧端面固定,右侧端面可随侧壁旋转。结果表明,不同物料装载量和滚筒转速下,在达到完全混合状态前,黄红颗粒物料初始轴向界面处可能出现3种不同的径向结构:黄?红结构、红?黄?红结构和红?黄结构。红?黄?红结构和红?黄结构工况下,固定端面一侧还可出现更复杂的多层三明治结构。径向结构源自滚筒端面效应导致的颗粒轴向对流,颗粒轴向速度在切向截面上的分布决定了径向结构的类型。
引用本文
侯全勋 董世杰 张泉 冯勇进 王晓宇 刘晓星. 滚筒端面对颗粒物料轴向混合过程影响的离散模拟[J]. 过程工程学报, 2019, 19(5): 949-958.
Quanxun HOU Shijie DONG Quan ZHANG Yongjin FENG Xiaoyu WANG Xiaoxing LIU. Discrete simulation of influence of drum end-wall on axial mixing behavior of granular material[J]. Chin. J. Process Eng., 2019, 19(5): 949-958.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219108
http://www.jproeng.com/CN/Y2019/V19/I5/949
参考文献
[1]Arntz M M H D, Otter W K D, Beeftink H H, et al.The influence of end walls on the segregation pattern in a horizontal rotating drum[J].Granular Matter, 2013, 15(1):25-38 [2]Arntz M M H D, Otter W K D, Briels W J, et al.Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level[J].Aiche Journal, 2010, 54(12):3133-3146 [3]Chen P, Ottino J M, Lueptow R M.Granular axial band formation in rotating tumblers: a discrete element method study[J].New Journal of Physics, 2016, 13(5):055021- [4]Staron L, Phillips J C.Segregation time-scale in bi-disperse granular flows[J].Physics of Fluids, 2014, 26(3):147-158 [5]Aranson I S, Tsimring L S.Patterns and collective behavior in granular media: Theoretical concepts[J].Review of Modern Physics, 2008, 78(2):641-692 [6]Dury C M, Ristow G H.Radial segregation through axial migration[J].Epl., 1999, 48(1):60-65 [7]Kuo H P, Hsu R C, Hsiao Y C.Investigation of axial segregation in a rotating drum[J].Powder Technology, 2005, 153(3):196-203 [8]Donald M B, Roseman B.Mixing and demixing of solid particles, Part Ⅰ, Mechanisms in a horizontal drum mixer.[J]., 1962, 7:749-753 [9]Gupta S D, Khakhar D V, Bhatia S K.Axial segregation of particles in a horizontal rotating cylinder[J].Chemical Engineering Science, 1991, 46(5–6):1513-1517 [10]Hill K M, Kakalios J.Reversible axial segregation of binary mixtures of granular materials[J].Physical Review E, 1994, 49(49):R3610-R3613 [11]Hill K M, Kakalios J.Reversible axial segregation of rotating granular media[J].Physical Review E, 1995, 52(4):4393-4400 [12]Zik O, Levine D, Lipson S G, et al.Rotationally induced segregation of granular materials[J].Physical Review Letters, 1994, 73(73):644-647 [13]Santomaso A, Olivi M, Canu P.Mechanisms of mixing of granular materials in drum mixers under rolling regime[J].Chemical Engineering Science, 2004, 59(16):3269-3280 [14]Santomaso A, Olivi M, Canu P.Mixing kinetics of granular materials in drums operated in rolling and cataracting regime[J].Powder Technology, 2005, 152(1):41-51 [15]Santomaso A C, Petenò L, Canu P.Radial segregation driven by axial convection[J].Epl., 2006, 75(4):576-582 [16]Dury C M, Ristow G H, Moss J L, et al.Boundary Effects on the Angle of Repose in Rotating Cylinders[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2012, 57(4):4491-4497 [17]Pohlman N A, Ottino J M, Lueptow R M.End-wall effects in granular tumblers: From quasi-two-dimensional flow to three-dimensional flow[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74(3 Pt 1):031305- [18]Cui Z, Zhao Y, Chen Y, et al.Transition of axial segregation patterns in a long rotating drum[J].Particuology, 2014, 13(2):128-133 [19]Chen P, Ottino J M, Lueptow R M.Subsurface granular flow in rotating tumblers: a detailed computational study[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 78(1):021303- [20]Chen P, Ottino J M, Lueptow R M.Onset mechanism for granular axial band formation in rotating tumblers[J].Physical Review Letters, 2010, 104(18):188002- [21]Liu X, Ge W, Xiao Y, et al.Granular flow in a rotating drum with gaps in the side wall[J].Powder Technology, 2008, 182(2):241-249 [22]Guo Y, Curtis J S.Discrete element method simulations for complex granular flows[J].Annual Review of Fluid Mechanics, 2015, 47(1):21-46 [23]Gui N, Fan J.Numerical study of heat conduction of granular particles in rotating wavy drums[J]. [J]., 2015, 84:740-751 [24]孙其诚, 刘晓星, 张国华, 等.密集颗粒物质的介观尺度研究综述[J].力学进展, 2017, 47(8):263-308 [25]Sun Q C, Liu X X, Zhang G H, et al.The mesoscopic structures of dense granular materials[J].Mechanical Progress, 2017, 47(8):263-308 [26]Kruyt N P, Ye M, Zeilstra C, et al.Longitudinal and transverse mixing in rotary kilns: A discrete element method approach[J].Chemical Engineering Science, 2005, 60(15):4083-4091 [27]Khan Z S, Morris S W.Subdiffusive axial transport of granular materials in a long drum mixer[J].Physical Review Letters, 2005, 94(4):048002- [28]Richard N T P.Diffusion of a granular pulse in a rotating drum[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 73(1):041301- [29]Boateng A A, Barr P V .Granular flow behaviour in the transverse plane of a partially filled rotating cylinder[J].[J]., 1997, 330:233-249 [30]Alizadeh E, Dubé O, Bertrand F, et al.Characterization of Mixing and Size Segregation in a Rotating Drum by a Particle Tracking Method[J].Aiche Journal, 2013, 59(6):1894-1905 [31]Yang S, Cahyadi A, Wang J, et al.DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum[J].Aiche Journal, 2016, 62(11):3874-3888 [32]Khakhar D V, Mccarthy J J, Ottino J M.Radial segregation of granular mixtures in rotating cylinders[J].Physics of Fluids, 1997, 9(12):3600-3614 [33]Aranson I S, Tsimring L S.Patterns and collective behavior in granular media: Theoretical concepts[J].Reviews of Modern Physics, 2006, 78(2):641-692 [34]Zhu H P, Zhou Z Y, Yang R Y, et al.Discrete particle simulation of particulate systems: A review of major applications and findings[J].Chemical Engineering Science, 2008, 63(23):5728-5770 |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 张增绪 王永昌 喻寅 刘晓星 . 部分烧结陶瓷材料力学特性的DEM模拟[J]. 过程工程学报, 2021, 21(3): 341-352. |
[4] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[5] | 贺睿 乔崇智 王利民 赵双良. 运动颗粒对传质过程影响的格子Boltzmann模拟[J]. 过程工程学报, 2021, 21(2): 125-133. |
[6] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[7] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[8] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[9] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[10] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[11] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[12] | 薛沚怡 钱付平 朱景晶 董伟 韩云龙 鲁进利. 高湿黏性颗粒在聚四氟乙烯微孔膜滤料表面沉积特性的数值模拟[J]. 过程工程学报, 2020, 20(5): 521-530. |
[13] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[14] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[15] | 陈岳 马明 张莹 过海龙 万启坤. 多孔介质方腔内置芯片热流耦合的LBM数值模拟[J]. 过程工程学报, 2020, 20(2): 123-132. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3330