1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 2. 上海理工大学光电信息与计算机工程学院,上海 200093 3. 中国石化上海石油化工研究院,中国石化三采用表面活性剂重点实验室,上海 201208
收稿日期:
2018-07-23修回日期:
2018-11-08出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
刘佳霖基金资助:
国家自然科学基金项目Molecular dynamics simulations of binary mixtures of anionic/cationic surfactants at oil-water interface
Jialin LIU1,2, Ying REN1*, Wei CHEN1, Hui YANG2, Xiujuan HE3, Yingcheng LI3*1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Optical?Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 3. Sinopec Key Lab of Surfactants for EOR, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
Received:
2018-07-23Revised:
2018-11-08Online:
2019-06-22Published:
2019-06-20摘要/Abstract
摘要: 采油过程中阴/阳离子型表面活性剂复配使用可显著增强驱油效果,对其微观机理的深入研究有助于驱油用表面活性剂的结构优化设计及使用。采用分子动力学方法研究了不同摩尔比的阴离子表面活性剂聚醚羧酸钠(PECNa)和阳离子表面活性剂十八烷基三甲基氯化铵(OTAC)复配体系在油水界面上的分子行为和物理性质。结果表明,复配体系比单种表面活性剂体系更有利于降低油水界面张力。不同复配比体系中,两种表面活性剂头基相反电荷间的吸引作用使表面活性剂之间对各自反离子的静电吸引作用减弱,且等摩尔比体系尤为明显。阴离子表面活性剂的亲水头基对阳离子表面活性剂亲水头基形成的水化层内水分子的结构取向无显著影响,反之亦然。通过调节两种离子型表面活性剂的复配比例,可调整油水界面吸附层微观结构,有望降低油水界面张力,提高采收率。
引用本文
刘佳霖 任瑛 陈卫 杨晖 何秀娟 李应成. 油水界面上阴/阳离子型复配表面活性剂体系的分子动力学模拟[J]. 过程工程学报, 2019, 19(3): 533-543.
Jialin LIU Ying REN Wei CHEN Hui YANG Xiujuan HE Yingcheng LI. Molecular dynamics simulations of binary mixtures of anionic/cationic surfactants at oil-water interface[J]. Chin. J. Process Eng., 2019, 19(3): 533-543.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218260
http://www.jproeng.com/CN/Y2019/V19/I3/533
参考文献
[1]朱友益, 沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M]. 石油工业出版社, 2002. [2]Li Y, Puerto M, Bao X, et al.Synergism and Performance for Systems Containing Binary Mixtures of AnionicCationic Surfactants for Enhanced Oil Recovery[J].Journal of Surfactants and Detergents, 2017, 20(1):21-34 [3]Antón R E, Graciaa A, Lachaise J, et al.SURFACTANT-OIL-WATER SYSTEMS NEAR THE AFFINITY INVERSION PART VIII : OPTIMUM FORMULATION AND PHASE BEHAVIOR OF MIXED ANIONIC-NONIONIC SYSTEMS VERSUS TEMPERATURE[J].Journal of Dispersion Science and Technology, 1992, 13(5):565-579 [4]Kume G, Gallotti M, Nunes G.Review on AnionicCationic Surfactant Mixtures[J].Journal of Surfactants and Detergents, 2007, 11(1):1-11 [5]Sohrabi B, Gharibi H, Tajik B, et al.Molecular Interactions of Cationic and Anionic Surfactants in Mixed Monolayers and Aggregates[J].The Journal of Physical Chemistry B, 2008, 112(47):14869-14876 [6]Panswad D, Sabatini David A, Khaodhiar S.Precipitation and Micellar Properties of Novel Mixed Anionic Extended Surfactants and a Cationic Surfactant[J].Journal of Surfactants and Detergents, 2011, 14(4):577-583 [7]Li Y, Zhang W, Kong B, et al.Mixtures of Anionic-Cationic Surfactants: A New Approach for Enhanced Oil Recovery in Low-Salinity High-Temperature Sandstone Reservoir [M]. 2016. [8]Wellington S, Richardson E.Low Surfactant Concentration Enhanced Waterflooding[J].Spe Journal, 1997, 79(2):389-405 [9]Zhang R, Somasundaran P.Advances in adsorption of surfactants and their mixtures at solid/solution interfaces [J]. Advances in colloid and interface science, 2006, 123: 213-229.[J].Advances in colloid and interface science, 2006, 123(21):213-229 [10]Bumajdad A, Eastoe J, Griffiths P, et al.Interfacial compositions and phase structures in mixed surfactant microemulsions[J].Langmuir, 1999, 15(16):5271-5278 [11]Conboy J C, Messmer M C, Richmond G L.Effect of alkyl chain length on the conformation and order of simple ionic surfactants adsorbed at the D2OCCl4 interface as studied by sum-frequency vibrational spectroscopy[J].Langmuir, 1998, 14(23):6722-6727 [12]Kunieda H, Ozawa K, Aramaki K, et al.Formation of microemulsions in mixed ionic? nonionic surfactant systems[J].Langmuir, 1998, 14(2):260-263 [13]Lu J, Purcell I, Lee E, et al.The composition and structure of sodium dodecyl sulfate-dodecanol mixtures adsorbed at the air-water interface: a neutron reflection study[J].Journal of Colloid and Interface science, 1995, 174(2):441-455 [14]Mckenna C E, Knock M M, Bain C D.First-order phase transition in mixed monolayers of hexadecyltrimethylammonium bromide and tetradecane at the air? water interface[J].Langmuir, 2000, 16(14):5853-5855 [15]Penfold J, Staples E, Tucker I, et al.Adsorption of di-chain cationic and non-ionic surfactant mixtures at the airwater interface[J].Physical Chemistry Chemical Physics, 2000, 2(22):5230-5234 [16]Penfold J, Staples E, Tucker I, et al.Structure and composition of the mixed monolayer of hexadecyltrimethylammonium bromide and benzyl alcohol adsorbed at the airwater interface[J].Langmuir, 1998, 14(8):2139-2144 [17]Penfold J, Staples E, Tucker I, et al.The structure of mixed surfactants at the air–water interface[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155(1):11-26 [18]Dhathathreyan A, Collins S J.Molecular dynamics simulation of (octadecylamino) dihydroxysalicylaldehyde at airwater interface[J].Langmuir, 2002, 18(3):928-931 [19]Dominguez H, Berkowitz M L.Computer simulations of sodium dodecyl sulfate at liquidliquid and liquidvapor interfaces[J].The Journal of Physical Chemistry B, 2000, 104(22):5302-5308 [20]Lu S, Somasundaran P.Tunable synergismantagonism in a mixed nonionicanionic surfactant layer at the solidliquid interface[J].Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(8):3874-9 [21]M.Baaden,MBurgard A,G. Wipff. TBP at the Water?Oil Interface:? The Effect of TBP Concentration and Water Acidity Investigated by Molecular Dynamics Simulations[J].Journal of Physical Chemistry B, 2001, 105(45):11131-11141 [22]Shang B Z, Zuowei Wang A, Larson R G.Molecular Dynamics Simulation of Interactions between a Sodium Dodecyl Sulfate Micelle and a Poly(Ethylene Oxide) Polymer[J].Journal of Physical Chemistry B, 2008, 112(10):2888-0 [23]陈美玲, 王正武, 王海军, 等.量子化学方法研究表面活性剂在气液界面上的吸附[J].科学通报, 2007, 52(5):521-524 [24]Schweighofer K J, Essmann U, Berkowitz M.Simulation of Sodium Dodecyl Sulfate at the Water?Vapor and Water?Carbon Tetrachloride Interfaces at Low Surface Coverage[J].The Journal of Physical Chemistry B, 1997, 101(19):3793-3799 [25]Schweighofer K J, Essmann U, Berkowitz M.Structure and Dynamics of Water in the Presence of Charged Surfactant Monolayers at the Water?CCl4 InterfaceA Molecular Dynamics Study[J].The Journal of Physical Chemistry B, 1997, 101(50):10775-10780 [26]Shelley M Y, Sprik M, Shelley J C.Pattern Formation in a Self-Assembled Soap Monolayer on the Surface of Water:? A Computer Simulation Study[J].Langmuir, 1999, 16(2):626-630 [27]Bandyopadhyay S, Shelley J C, Tarek M, et al.Surfactant Aggregation at a Hydrophobic Surface[J].The Journal of Physical Chemistry B, 1998, 102(33):6318-6322 [28]Shi W-X, Guo H-X.Structure,Interfacial Properties,and Dynamics of the Sodium Alkyl Sulfate Type Surfactant Monolayer at the WaterTrichloroethylene Interface: A Molecular Dynamics Simulation Study[J].The Journal of Physical Chemistry B, 2010, 114(19):6365-6376 [29]刘国宇, 顾大明, 丁伟, 等.表面活性剂界面吸附行为的分子动力学模拟[J].石油学报石油加工, 2011, 27(1):77-84 [30]Fodi B, Hentschke R.Simulated Phase Behavior of Model Surfactant Solutions[J].Langmuir, 1999, 16(4):1626-1633 [31]Gao Jian R Y, Ge Wei.Molecular Dynamics Simulation of Effect of Salt on the Compromise[J].Chinese Journal of Chemical Engineering, 2009, 17(4):654-660 [32]Gao J, Ge W Fau - Hu G, Hu G Fau - Li J, et al.From homogeneous dispersion to micelles-a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution[J].Langmuir the Acs Journal of Surfaces & Colloids, 2005, 21(11):5223-9 [33]Gao J, Ge W, Li J.Effect of concentration on surfactant micelle shapes —A molecular dynamics study[J].Science in China Series B: Chemistry, 2005, 48(5):470-475 [34]Marrink S J, De Vries A H, Mark A E.Coarse Grained Model for Semiquantitative Lipid Simulations[J].The Journal of Physical Chemistry B, 2003, 108(2):750-760 [35]Baoukina S, Monticelli L, Risselada H J, et al.The molecular mechanism of lipid monolayer collapse[J].Proceedings of the National Academy of Sciences, 2008, 105(31):10803-10808 [36]Wang S, Larson R G.Coarse-Grained Molecular Dynamics Simulation of Self-Assembly and Surface Adsorption of Ionic Surfactants Using an Implicit Water Model[J].Langmuir the Acs Journal of Surfaces & Colloids, 2015, 31(4):1262-1271 [37]Katiyar P, Singh J K.A coarse-grain molecular dynamics study of oil-water interfaces in the presence of silica nanoparticles and nonionic surfactants[J].Journal of Chemical Physics, 2017, 146(20):204702-0 [38]Baoukina S, Tieleman D P.Direct Simulation of Protein-Mediated Vesicle Fusion: Lung Surfactant Protein B[J].Biophysical Journal, 2010, 99(7):2134-42 [39]Andersen H C.Molecular dynamics simulations at constant pressure andor temperature[J].The Journal of chemical physics, 1980, 72(4):2384-2393 [40]Hess B, Bekker H, Berendsen H J, et al.LINCS: a linear constraint solver for molecular simulations[J].Journal of computational chemistry, 1997, 18(12):1463-1472 [41]Gang H Z, Liu J F, Mu B Z.Molecular Dynamics Simulation of Surfactin Derivatives at the DecaneWater Interface at Low Surface Coverage[J].Journal of Physical Chemistry B, 2010, 114(8):2728-2737 [42]Verlet L.Computer "Experiments" on Classical FluidsI. Thermodynamical Properties of Lennard-Jones Molecules[J].Health Physics, 1967, 22(1):79-85 [43]Bussi G, Donadio D, Parrinello M.Canonical sampling through velocity rescaling[J].J Chem Phys, 2007, 126(1):014101-0 [44]Jiang Y, Wang H, Kindt J T.Atomistic simulations of bicelle mixtures[J].Biophys J, 2010, 98(12):2895-903 [45]Darden T, York D, Pedersen L.Particle mesh Ewald: An N?log(N) method for Ewald sums in large systems[J].The Journal of Chemical Physics, 1993, 98(12):10089-10092 [46]Essmann U, Perera L, Berkowitz M L, et al.A smooth particle mesh Ewald method[J].The Journal of Chemical Physics, 1995, 103(19):8577-8593 [47]Van Der Spoel D, Lindahl E, Hess B, et al.GROMACS: Fast,flexible,and free[J].Journal of Computational Chemistry, 2005, 26(16):1701-1718 [48]Lee J, Cheng X, Swails J M, et al.CHARMM-GUI input generator for NAMD,GROMACS,AMBER,OpenMM,and CHARMMOpenMM simulations using the CHARMM36 additive force field[J].Journal of chemical theory and computation, 2015, 12(1):405-413 |
相关文章 4
[1] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[2] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[3] | 任瑛 徐骥. 蛋白质体系分子动力学模拟的前沿进展-从介科学角度重新审视[J]. 过程工程学报, 2018, 18(6): 1126-1137. |
[4] | 崔哲 郭艳东 霍锋 谢小东. CO2和CH4在离子液体体系中的平均力位能的分子动力学模拟[J]. 过程工程学报, 2018, 18(1): 182-189. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3269