1. 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北 武汉 4300812. 高温材料与炉衬技术国家地方联合工程研究中心,湖北 武汉 4300813. 黄石山力兴冶薄板有限公司,湖北 黄石 4351004. 黄石山力科技股份有限公司,湖北 黄石 435003
收稿日期:
2018-09-11修回日期:
2018-12-29出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
戴方钦Numerical simulation on thermal process of recycling jet cooling in heat treatment of strip steel in protective hydrogen atmosphere
Ping'an CHEN1,2, Fangqin DAI1,2*, Yue GUO1,2, Luwei PAN1,2, Jiangjun KE3, Jiamou WU4, Yuansheng LEI3, Yuncheng LI41. Key Lab for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China2. National?provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China3. Huangshi Sunny Xingye Strip Co., Ltd., Huangshi, Hubei 435100, China4. Huangshi Sunny Technology Co., Ltd., Huangshi, Hubei 435003, China
Received:
2018-09-11Revised:
2018-12-29Online:
2019-08-22Published:
2019-08-15Contact:
DAI Fang-qin 摘要/Abstract
摘要: 对带钢保护气氛循环喷射冷却热工过程建立了一维非稳态传热模型,采用有限差分计算方法计算了带钢的温度场,确定了带钢在不同厚度、初始温度及运行速度下所需的综合换热系数,考察了喷箱的结构参数和循环冷却介质的物性参数对带钢出口温度的影响。结果表明,不同厚度的带钢在满足性能要求及安全的条件下,存在最大运行速度,厚度超过3 mm的带钢的断面温差对带钢性能的影响不能忽略;带钢出口温度会随带钢至喷孔板距离(?)与喷孔直径(D)的比值增大而增大,但增大速率随?/D增加逐渐变小。喷孔间距(?n)与喷孔直径的比值存在最佳范围,且与?有关,因此在实际设计喷箱结构时,不仅需考虑?n/D的最佳值,还需结合?综合考虑;冷却介质(H2+N2)的温度每升高10℃,带钢出口温度增加约3℃。带钢出口温度随冷却介质中氢气含量及流速增加而减小,但减小速率随二者增加而逐渐减小。现场应用结果表明,带钢出口温度的模拟值与实测值吻合较好,误差约为3.4%,满足应用要求。
引用本文
陈平安 戴方钦 郭悦 潘卢伟 柯江军 巫嘉谋 雷远胜 李运成. 带钢保护气氛循环喷射冷却热工过程的数值模拟[J]. 过程工程学报, 2019, 19(4): 750-758.
Ping'an CHEN Fangqin DAI Yue GUO Luwei PAN Jiangjun KE Jiamou WU Yuansheng LEI Yuncheng LI. Numerical simulation on thermal process of recycling jet cooling in heat treatment of strip steel in protective hydrogen atmosphere[J]. Chin. J. Process Eng., 2019, 19(4): 750-758.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218285
http://www.jproeng.com/CN/Y2019/V19/I4/750
参考文献
[1] 李九龄,胡八虎,陈永朋.热镀锌设备与工艺[M].北京:冶金工业出版社,2015; 191. [2]Li J L, Hu B H, Chen Y P. Hot-dip galvanizing equipment and process[M].Beijing: Metallurgical Industry Press, 2005; 191. [3] Vladimir B.Ginzburg.板带轧制工艺学[M].王国栋译.北京:冶金工业出版社,1998. [4]Vladimir B.Ginzburg. Strip rolling process [M]. Wang Guodong translation. Beijing: Metallurgical Industry Press, 1998. [5] 日本钢铁协会.板带轧制理论与实践[M].王国栋,吴国良等译.北京:中国铁道出版社,1995. [6]Japan Iron and Steel Association.Strip rolling theory and practice [M]. Translated by Wang G D, Wu G L, etc. Beijing: China Railway Publishing House, 1995. [7] Wirtnik K P.High-Performance Hydrogen Annealing [ J]. 1990. 17(1); 1 .[J].Heat Treatment of Metals, 1990, 17(1):1-1 [8] Raick Jean-Marc, Crutzen Jean-Pierre, Dosogne Edgard, et al .Atmosphere Control During Continuous Heat Treatment of Metal Strips[J].US patent, 2008, 6(10):- [9]王永萍,鲍戟,高立.连续退火炉冷却技术的发展和现状[J].工业炉, 2002, 24(1):21-24 [10]Wang Y P, Bao T, Gao L.Development and Status Quo of Continuous Annealing Furnace Cooling Technology[J].Industrial Furnace, 2002, 24(1):21-24 [11] 陈昌将.冲击冷却流动与换热特性的数值模拟研究[D].哈尔滨:哈尔滨工程大学, 2012: 1-19. [12]Chen C J.Numerical simulation of impact cooling flow and heat transfer characteristics [D]. Harbin: Harbin Engineering University, [13]袁国, 王国栋, 刘相华.带钢超快速冷却条件下的换热过程[J].钢铁研究学报, 2007, 19(5):37-43 [14]Yuan G, Wang G D, Liu X H.Heat transfer process of strip steel under ultra-fast cooling conditions[J].Journal of Iron and Steel Research, 2007, 19(5):37-43 [15] 张靖周,李永康,谭晓茗.阵列射流冲击冷却局部对流换热特性的数值计算与实验研究[J][J].航空学报, 2004, 25(4):339-343 [16]Zhang J Z, Li Y K, Tan X M.umerical calculation and experimental study of local convective heat transfer characteristics of array jet impingement cooling [J][J].Acta Aeronautica et Astronautica Sinica, 2004, 25(4):339-343 [17] Yuan G,Yu M,Wang G D,Liu X H..heat transfer of hot strip during ultra fast cooling[J][J].Journal of Northeastern University, 2006, 27(4):406-409 [18]彭良贵, 刘相华, 王国栋.超快冷却条件下温度场数值模拟[J].东北大学学报自然科学版, 2004, 25(4):360-362 [19]Peng L G, Liu X H, Wang G D.Numerical simulation of temperature field under ultra-fast cooling conditions [J]. [J].Journal of Northeastern University (Natural Science), 2004, 25(4):360-362 [20] 万飞,王勇勤,金敏..立式连续退火炉快冷段带钢冷却温度分析计算[J][J].钢铁研究学报, 2011, 23(4):14-18 [21]Wan F, Wang Y Q, Jin M.Analysis and calculation of strip steel cooling temperature in rapid cooling section of vertical continuous annealing furnace [J][J].Journal of Iron and Steel Research, 2011, 23(4):14-18 [22] 余万华,张中平..热轧钢板在加速冷却时的温度模型[J].[J].北京科技大学学报, 2005, 27(5):567-570 [23]Yu W H, Zhang Z P.Temperature model of hot rolled steel sheet during accelerated cooling [J]. [J].Journal of University of Science and Technology Beijing, 2005, 27(5):567-570 [24] 陈小林,王国栋,田勇,等..中厚板超快速冷却条件下的温度模型[J].[J].钢铁, 2013, 48(10):46-49 [25]Chen X L, WangG D, Tian Y, etc.Temperature model of medium and thick plate under ultra-fast cooling conditions [J]. [J].Iron and Steel,, 2013, 48(10):46-49 [26] Jia F,Jin J Z. .Heat transfer coefficient during cooling water of continuous casting of aluminum alloy [J][J].The Chinese Journal of Nonferrous Metals,, 2001, 11(S1):39-43 [27] Serajzadeh, Siamak..Modelling of temperature history and phase transformations during cooling of steel [J].[J].Journal of Materials Processing Technology, 2004, 146(3):311-311 [28]许学成,戴方钦,潘妮,等.带钢热处理过程中喷射冷却数学模型[J].北京:金属热处理, 2018, 43(2):218-225 [29]Xu X C, Dai F Q, Pan N, et al.Mathematical model of jet cooling during heat treatment of strip steel [J].[J].Beijing: Heat Treatment of Metals, 2018, 43(2):218-225 [30]程杰锋,刘正东,唐广波.带钢层流冷却过程数值模拟及卷取温度预测分析[J].北京钢铁, 2010, 45(11):57-57 [31]Cheng J F, Liu Z D, Tang G B.Numerical simulation of laminar cooling process of strip steel and prediction analysis of coiling temperature[J].Beijing: Iron and Steel, 2010, 45(11):57-57 [32] Ananya Mukhopadhyay, Sudipta Sikdar.Implementation of an On-Line Run-Out Table Model in a Hot Strip Mill [J].[J].Journal of Materials Processing Technology ,, 2005, 169:164-164 [33] Deshpande D A, Srinivasa K.Computer Analysis for the Prediction of a strip Profile in cold Rolling[J].[J].Journal of Materials Processing Technology,, 1997, (63):712-717 [34] 杨世铭, 陶文铨.传热学[M].北京:高等教育出版社, 1998; 124. [35]Yang S M, Tao W Q.Heat transfer [M]. Beijing: Higher Education press, 1998; 124. [36] INCROPERA F P.Fundamentals of heat and mass transfer[M].New York:Wiley.1990. |
相关文章 2
[1] | 章利特 余秋李 吴博文 刘天程 冯子龙. 超音速喷管内准一维气相流动建模与数值模拟[J]. 过程工程学报, 2020, 20(12): 1386-1396. |
[2] | 莫逊 朱冬生 林成迪. 三维管烟气换热器传热特性的实验及模拟研究[J]. 过程工程学报, 2018, 18(1): 41-48. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3300