1. 天津大学化工学院,天津 300072 2. 山东益丰生化环保股份有限公司,山东 滨州 256500 3. 天津大学国家工业结晶工程技术研究中心,天津 300072 4. 天津化学化工协同创新中心,天津 300072
收稿日期:
2019-01-22修回日期:
2019-03-14出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
谢闯Synthesis and crystal conversion processes of nonlinear optical crystal 3BiCl3.7SC(NH2)2
Yunhe BAI1, Tiezhu PEI1, Liang ZHANG1, Ning ZHANG2, Dejia MA1, Qiuxiang YIN1,3,4, Chuang XIE1,3,4*1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. Shandong Efirm Biochemistry and Environmental Protection Co., Ltd., Binzhou, Shandong 256500, China 3. National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin 300072, China 4. National Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Received:
2019-01-22Revised:
2019-03-14Online:
2019-10-22Published:
2019-10-22摘要/Abstract
摘要: 针对金属有机配合物非线性光学晶体3BiCl3?7SC(NH2)2 (DCBPB)合成过程中伴生BiCl3?3SC(NH2)2 (β-BTC)的问题,以硫脲与氯化铋为原料,在甲酸?水体系中研究了溶剂配比、反应温度、反应物配比等因素对DCBPB纯度的影响,对反应条件进行了优化,并基于XRD特征峰面积标准曲线法研究了β-BTC与DCBPB之间的转化过程。结果表明,甲酸抑制氯化铋水解且选择性生成DCBPB,氯化铋与硫脲摩尔配比大于1:3时可选择性生成DCBPB。合成过程先生成β-BTC,再由β-BTC转化为DCBPB,甲酸?水体系中氯化铋水解发生在β-BTC生成过程中,且不可避免,导致基于氯化铋直接合成只能获得最高含量为89.91wt%的DCBPB晶体。β-BTC向DCBPB转化率极高且无水解,可获得DCBPB含量大于98wt%的晶体。
引用本文
白云鹤 裴铁柱 张良 张宁 马得佳 尹秋响 谢闯. 非线性光学晶体3BiCl3.7SC(NH2)2的合成及其转化过程[J]. 过程工程学报, 2019, 19(5): 1030-1036.
Yunhe BAI Tiezhu PEI Liang ZHANG Ning ZHANG Dejia MA Qiuxiang YIN Chuang XIE. Synthesis and crystal conversion processes of nonlinear optical crystal 3BiCl3.7SC(NH2)2[J]. Chin. J. Process Eng., 2019, 19(5): 1030-1036.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219125
http://www.jproeng.com/CN/Y2019/V19/I5/1030
参考文献
[1]Franken P A, Hill A E, Peters C W, et al.Generation of Optical Harmonics[J].Physical Review Letters, 1961, 7(4):118-119 [2]Jang S H, Jen A K.Electro-optic (E-O) molecular glasses[J].Chemistry - An Asian Journal, 2010, 4(1):20-31 [3]Wu K, Chen X, Snijders J G, et al.Theoretical studies of nonlinear optical crystals in metal cluster compounds[J].Journal of Crystal Growth, 2002, s 237–239(1):663-667 [4]Gaab M, Trukhan N, Maurer S, et al.The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications[J].Microporous & Mesoporous Materials, 2012, 157(4):131-136 [5]Kirupavathy S S, Mary S S, Srinivasan P, et al.Investigations on the growth and characterization studies of cadmium thiourea acetate (CTA) single crystals[J].Journal of Crystal Growth, 2007, 306(1):102-110 [6]Antochshuk V, Olkhovyk O, Jaroniec M, et al.Benzoylthiourea-modified mesoporous silica for mercury(II) removal[J].Langmuir, 2003, 19(7):3031-3034 [7]Dibella S, Fragala I, Ledoux I, et al.Synthesis,characterization,optical spectroscopic,electronic structure,and second-order nonlinear optical (NLO) properties of a novel class of donor-acceptor bis(salicylaldiminato)nickel(II) Schiff base NLO chromophores[J].Journal of the American Chemical Society, 1997, 119(40):9550-9557 [8]Xing G, Jiang M, Shao Z, et al..Bis-thiourea cadmium chloride (BTCC)--A novel nonlinear optical crystal of organometallic complex [J].Chinese Journal of Lasers, 1987, 14(5):48-54 [9]Bierbach U, Hambley T W, Roberts J D, et al.Oxidative Addition of the Dithiobis(formamidinium) Cation to Platinum(II) Chloro Am(m)ine Compounds: Studies on Structure,Spectroscopic Properties,Reactivity,and Cytotoxicity of a New Class of Platinum(IV) Complexes Exhibiting S-Thiourea Coordination[J].Inorganic Chemistry, 1996, 35(17):48-65 [10]El Din A M S, El Hosary A A, Saleh R M, et al.Peculiarities in the Behaviour of Thiourea as corrosion‐inhibitor[J].Materials & Corrosion, 2015, 28(1):26-31 [11]Elkholy A, Etman M, Kertit S, et al.Chemical and electrochemical inhibition studies of corrosion and hydrogen surface embrittlementII. Fe 0.81 B 0.13 Si 0.04 C 0.02 amorphous alloy in molar HCl[J].Journal of Applied Electrochemistry, 1989, 19(4):512-518 [12]Henderson W, Nicholson B K, Rickard C E F.Platinum(II) complexes of chelating and monodentate thiourea monoanions incorporating chiral,fluorescent or chromophoric groups[J].Inorganica Chimica Acta, 2001, 320(1–2):101-109 [13]Lochran S, Bailey R T, Cruickshank F R, et al.The Nonlinear Optical Properties of the Crystal (S)-3-Methyl-5-nitro-N-(1-phenylethyl)-2-pyridinamine[J].Journal of Physical Chemistry B, 2000, 104(104):6710-6716 [14]Zhang L, Zhou L, Hou B, et al.Synthesis,Growth,and Characterization of a New Thiourea and Bismuth Chloride Complex with Excellent Nonlinear Optical Properties[J].Transactions of Tianjin University, 2018, 24(6):532-537 [15]梅梅, 李煜, 杨伟峰.射线粉末衍射技术在多晶型药物定量分析中的应用[J].中国现代应用药学, 2017, 34(9):1356-1360 [16]Rius J, Plana F, Palanques A.A standardless X-ray diffraction method for the quantitative analysis of multiphase mixtures[J].Journal of Applied Crystallography, 1987, 20(6):457-460 [17]王娜, 陶晓龙, 史欢欢, 等.过程分析技术在晶体多晶型研究中的应用[J].化学工业与工程, 2017, 34(02):1-9 [18]Klug H P, Alexander L, Kummer E.Quantitative Analysis with X-Ray Spectrometer[J].Analytical Chemistry, 1948, 20(7):607-609 [19]Alexander L, Klug H P.Basic Aspects of X-Ray Absorption in Quantitative Diffraction Analysis of Powder Mixtures[J].Powder Diffraction, 1948, 20(2):66-69 [20]谢大鹏, 伏彩萍.氯化铋水解法制备珠光氯氧铋的研究[J].湖南有色金属, 2010, 26(06):13-14 |
相关文章 8
[1] | 张佴栋 常军 周俊文 张利波 彭金辉 任晓鹏. 响应曲面法优化超声强化浸出烧结灰中银的工艺[J]. 过程工程学报, 2016, 16(5): 757-766. |
[2] | 常军张佴栋周俊文张利波彭金辉任晓鹏. 硫脲浸出烧结灰中银的动力学[J]. 过程工程学报, 2015, 15(4): 567-573. |
[3] | 李文聪潘涌璋王珺叶林顺金腊华. 二氧化硫脲还原法制备纳米铜颗粒[J]. , 2014, 14(6): 1029-1034. |
[4] | 张莉徐建国张龙. NaOH-硫脲-H2O溶剂体系对木质纤维素的溶解及组分分离[J]. , 2013, 13(3): 385-390. |
[5] | 王云燕柴立元. 金在碱性硫脲溶液中溶解的电化学动力学[J]. , 2008, 8(3): 529-534. |
[6] | 郑粟;王云燕;柴立元;张晓飞. 高稳定性碱性硫脲体系对不同类型金矿的适应性[J]. , 2005, 5(3): 289-294. |
[7] | 胡小玲;张生;管萍;张新丽. 大孔强酸树脂吸附硫脲金[J]. , 2004, 4(5): 397-400. |
[8] | 朱萍;古国榜;贾宝琼. P507从酸性硫脲浸金液中回收金[J]. , 2002, 2(2): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3334