删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

直接接触沸腾换热过程连续相特征提取及分布规律

本站小编 Free考研考试/2022-01-01

熊文真1,徐建新2,黄峻伟3*
1. 信阳职业技术学院,河南 信阳 4640002. 昆明理工大学复杂有色金属资源清洁利用国家重点实验室,云南 昆明 6500933. 云南农业大学机电工程学院,云南 昆明 650100
收稿日期:2018-05-30修回日期:2018-08-18出版日期:2019-08-22发布日期:2019-08-15
通讯作者:黄峻伟

基金资助:国家自然科学基金资助项目 (U1302274);国家自然科学基金联合基金;云南省基金

Feature extraction and distribution of continuous phase in direct contact boiling heat transfer process

Wenzhen XIONG1, Jianxin XU2, Junwei HUANG3*
1. Xinyang Vocational and Technical College, Xinyang, Henan 464000, China2. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China3. Faculty of Mechanical and Electrical Engineering, Yunnan Agriculture University, Kunming, Yunnan 650100, China
Received:2018-05-30Revised:2018-08-18Online:2019-08-22Published:2019-08-15
Contact:Jun wei HUANG

Supported by:Projects (U1302274) supported by the National Science Foundation of China




摘要/Abstract


摘要: 利用支持向量机(SVM)理论构建了有机工质?导热油直接接触沸腾换热过程连续相特征提取方法,获得了导热油和气泡群两相流流型的拓扑结构。对9组正交实验工况获得的两相流图像分别进行连续相特征提取和同调群计算,得到量化连续相数量的1维和0维贝蒂数?1和?0用于粗略估计气泡群数量,并与传统数字图像处理方法的结果比较,对比了换热效率较好和较差情况下形态学开运算对SVM方法的影响,建立了两相流贝蒂数演化规律与换热效率的关联性,比较了传统方法获得的气泡群数量和SVM方法获得的连续相“洞”的数量的演化规律。结果表明,SVM结合贝蒂数方法不仅可准确量化导热油连续相,且可粗略地表征气泡分散相;L6工况(连续相导热油液位高度Z=0.5 m、初始换热温差?T=120℃、分散相工质流率U0=0.04 m/s、连续相导热油流率Uc=0.15 kg/s)下连续相数量变化几乎重叠,相对波动较小,而L4工况(Z=0.5 m, ?T=80℃, U0=0.06 m/s, Uc=0.3 kg/s)下连续相数量偏离程度较大;SVM方法获得的连续相和气泡群个数演化曲线同步,且混合时间相同,?1和?0中位数偏离程度的局部最小值可作为性能指标之一,通过实验验证可优选出换热效果最好的工况。

引用本文



熊文真 徐建新 黄峻伟. 直接接触沸腾换热过程连续相特征提取及分布规律[J]. 过程工程学报, 2019, 19(4): 704-713.
Wenzhen XIONG Jianxin XU Junwei HUANG. Feature extraction and distribution of continuous phase in direct contact boiling heat transfer process[J]. Chin. J. Process Eng., 2019, 19(4): 704-713.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218229
http://www.jproeng.com/CN/Y2019/V19/I4/704







[1] Mahood HB, Sharif AO, Al-Aibi S, Hawkins D, Thorpe R. Analytical solution and experimental measurements for temperature distribution prediction of three-phase direct-contact condenser[J]. Energy, 2014, 67(0): 538-547
[2] Y.J. Hyun, J.H. Hyun, W.G. Chun, Y.H. Kang. An experimental investigation into the operation of a direct contact heat exchanger for solar exploitation[J]. International Communications in Heat and Mass Transfer, 2005, 32(3–4): 425-434
[3] 余胜麟。采用直接接触式换热器的蒸气压缩式热泵系统的初步研究[D]。天津:天津大学,2008
Yu SL. A preliminary study of vapor compression heat pump systems using direct contact heat exchangers [D]. Tianjin University, 2008.
[4] T. Nomura, M. Tsubota, T. Oya, N. Okinaka, T. Akiyama, Heat storage in direct-contact heat exchanger with phase change material, Applied Thermal Engineering, 2013, 50(1): 26-34.
[5] M.N.A. Hawlader, M.A. Wahed, Analyses of ice slurry formation using direct contact heat transfer, Applied Energy, 2009, 86(7C8): 1170-1178
[6] 黄峻伟,王辉涛,王华,徐建新,葛众,ORC直接接触式蒸发器传热性能研究[J],动力工程学报,2013, (12): 969-973
Huang JW, Wang HT, Wang H, Xu JX, Ge Z, Research on Heat Transfer Performance of ORC Direct Contact Evaporator[J], Journal of Power Engineering,2013, (12): 969-973
[7] Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4):951-967.
[8] Ruzicka M C, Draho? J, Mena P C, et al. Effect of viscosity on homogeneous–heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Science, 2003, 96(1–3):15-22.
[9] Ruzicka M C, Zahradn??K J, Draho? J, et al. Homogeneous–heterogeneous regime transition in bubble columns[J]. Chemical Engineering Science, 2001, 56(15):4609-4626.
[10] Filho F A B, Ribeiro G B, Caldeira A D. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model[J]. Nuclear Engineering & Design, 2016, 308:30-37.
[11] Ribeiro C, Lage P. Gas‐Liquid Direct‐Contact Evaporation: A Review[J]. Chemical Engineering & Technology, 2010, 28(10):1081-1107.
[12] Babaei R, Bonakdarpour B, Ein-Mozaffari F. Analysis of gas phase characteristics and mixing performance in an activated sludge bioreactor using electrical resistance tomography[J]. Chemical Engineering Journal, 2015, 279(0): 874-884.
[13] Harrison S T L, Stevenson R, Cilliers J J. Assessing solids concentration homogeneity in Rushton-agitated slurry reactors using electrical resistance tomography (ERT)[J]. Chemical Engineering Science, 2012, 71(13): 392-399.
[14] 庞明军, 徐一丹, 魏进家. 管道泡状流相分布模式和分布机理研究进展[J]. 化工进展, 2014, 33(11): 2829-2842.
Pang M J, Xu Y D, Wei J J. Phase distribution pattern and mechanism of bubbly flow in pipes[J]. Chemical Industry and Engineering Progress
[15] Dong Z, Xu J, Jiang F, et al. Numerical study of vapor bubble effect on flow and heat transfer in microchannel[J]. International Journal of Thermal Sciences, 2012, 54(1): 22-32.
[16] Xu J L, Zhang X M. Start-up and steady thermal oscillation of a pulsating heat pipe[J]. Heat and Mass Transfer, 2005, 41(8): 685-694.
[17] Chen H, Xu J, Li Z, et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept[J]. International Journal of Multiphase Flow, 2012, 45: 12-23.
[18] Xu J, Wang H, Fang H. Multiphase mixing quantification by computational homology and imaging analysis[J]. Applied Mathematical Modelling, 2011, 35(5): 2160-2171.
[19] Huang J, Xu J, Sang X, et al. Quantifying the synergy of bubble swarm patterns and heat transfer performance using computational homology[J]. International Journal of Heat and Mass Transfer, 2014, 75(4): 497-503.




[1]郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399.
[2]李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275.
[3]黎义斌 梁开一 李正贵. 基于流固耦合的斜轴式搅拌器水力性能数值分析[J]. 过程工程学报, 2020, 20(12): 1424-1431.
[4]马树辉 王若瑾 王德武 刘燕 张少峰. Geldart A类颗粒节涌床气固流动特性的实验及模拟[J]. 过程工程学报, 2019, 19(5): 967-974.
[5]陈飞国 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660.
[6]刘凤霞 李永强 许晓飞 董鑫 刘志军. 微曝氧化沟气液两相传质模型构建及传质影响因素分析[J]. 过程工程学报, 2019, 19(4): 676-684.
[7]陈鑫 肖颀 管小平 杨宁. 内置涡流发生器的管内过冷沸腾与强化换热的模拟[J]. 过程工程学报, 2019, 19(3): 524-532.
[8]雷杰 王昱 马明 李培生 张莹. 基于FTM方法的双气泡融合特性模拟[J]. 过程工程学报, 2019, 19(2): 263-270.
[9]冯蘅 李清海 蒙爱红 张衍国 孔博. 颗粒团聚对稀相气固流动脉动关联项的影响[J]. 过程工程学报, 2019, 19(2): 279-288.
[10]王力军 段叔平 徐凌锋 孙嘉君. 柱形流化床传热特性的数值模拟[J]. 过程工程学报, 2019, 19(1): 110-117.
[11]丁国栋 陈家庆 王春升 尚超 刘美丽 蔡小垒 姬宜朋. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941.
[12]张建伟 施博文 冯颖 张志刚. 浸没状态下液-液两相水平对撞浓度场的数值模拟[J]. 过程工程学报, 2018, 18(1): 57-62.
[13]王力军 韦光超 段叔平 徐凌锋. CFD-DEM模拟颗粒形状对流化床二元颗粒混合特性的影响[J]. 过程工程学报, 2017, 17(4): 684-688.
[14]秦敬轩 郑平 陈旭. 不同出入口条件下气液喷射器喷射性能的数值模拟[J]. 过程工程学报, 2017, 17(3): 469-476.
[15]胡坤 艾志久 付必伟 李杰 李振北. T型管油水分离特性数值模拟 [J]. , 2017, 17(1): 29-34.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3318
相关话题/过程 工程 实验 传热 云南

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • LF精炼废渣水热浸出过程中主要矿相的溶解行为
    何环宇1,2,3,侯巍巍1,2,3,刘虹灵1,2,3,李杨1,2,3*1.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.湖北省冶金二次资源工程技术研究中心,湖北武汉4300813.武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081收稿日期:201 ...
    本站小编 Free考研考试 2022-01-01
  • 带钢保护气氛循环喷射冷却热工过程的数值模拟
    陈平安1,2,戴方钦1,2*,郭悦1,2,潘卢伟1,2,柯江军3,巫嘉谋4,雷远胜3,李运成41.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.高温材料与炉衬技术国家地方联合工程研究中心,湖北武汉4300813.黄石山力兴冶薄板有限公司,湖北黄石4351004.黄石 ...
    本站小编 Free考研考试 2022-01-01
  • MoSi2和(Mo,W)Si2涂层的宽温域氧化过程
    毛绍宝1,2,杨英2,李海庆3,张世宏1,2*1.安徽工业大学材料科学与工程学院,安徽马鞍山2430022.安徽工业大学现代表界面工程研究中心,安徽马鞍山2430023.中国运载火箭技术研究院航天材料及工艺研究所,北京100076收稿日期:2018-11-10修回日期:2019-01-18出版日期: ...
    本站小编 Free考研考试 2022-01-01
  • “过程工程学”的由来及对“不可逆循环过程”的研究
    李佐虎*中国科学院过程工程研究所,北京100190收稿日期:2019-05-30出版日期:2019-06-28发布日期:2019-06-10通讯作者:李佐虎OriginofprocessengineeringandstudyontheirreversiblecircularprocessesZuoh ...
    本站小编 Free考研考试 2022-01-01
  • 电渣重熔结晶器旋转对M2高速钢凝固过程的影响
    陈佳顺,常凯华,郑福舟,张章,常立忠*安徽工业大学冶金工程学院,安徽马鞍山243032收稿日期:2018-08-13修回日期:2018-10-26出版日期:2019-06-22发布日期:2019-06-20通讯作者:常立忠基金资助:国家自然科学基金;安徽省高校优秀青年人才支持计划Effectofel ...
    本站小编 Free考研考试 2022-01-01
  • 碳化锆陶瓷有机前驱体的热解过程
    孔玮佳1,2,于守泉1,戈敏1,张伟刚1*,杜令忠11.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001902.中国科学院大学化学工程学院,北京100049收稿日期:2018-10-11修回日期:2018-11-20出版日期:2019-06-22发布日期:2019-06-20通讯作者 ...
    本站小编 Free考研考试 2022-01-01
  • 活性炭混合钢渣烧结烟气脱硫脱硝实验研究
    杨小白1,韩云龙1,2*,李迎根1,张浩1,钱付平1,胡永梅11.安徽工业大学建筑工程学院,安徽马鞍山2430322.东南大学能源热转换及其过程测控教育部重点实验室,江苏南京210096收稿日期:2018-07-27修回日期:2018-09-18出版日期:2019-04-22发布日期:2019-04 ...
    本站小编 Free考研考试 2022-01-01
  • 纳米管表面和自润湿溶液相耦合的传热性能
    司祥华1,胡柏松2,张少峰2*,王德武2,余伟明21.河北工业大学海洋科学与工程学院,天津3001302.河北工业大学化工学院,天津300130收稿日期:2018-02-19修回日期:2018-04-26出版日期:2019-02-22发布日期:2019-02-12通讯作者:张少峰Heattransf ...
    本站小编 Free考研考试 2022-01-01
  • 离心场强化晶硅切割废料Si/SiC分离过程油水分相
    王占奎1,2,王东2*,王志2,马文会1,万小涵11.昆明理工大学冶金与能源工程学院,云南昆明6500932.中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京100190收稿日期:2018-04-10修回日期:2018-07-13出版日期:2019-02-2 ...
    本站小编 Free考研考试 2022-01-01
  • 柱形流化床传热特性的数值模拟
    王力军*,段叔平,徐凌锋,孙嘉君沈阳航空航天大学能源与环境学院,辽宁沈阳110136收稿日期:2018-01-19修回日期:2018-04-19出版日期:2019-02-22发布日期:2019-02-12通讯作者:徐凌锋基金资助:国家重点基础研究发展计划项目Numericalsimulationon ...
    本站小编 Free考研考试 2022-01-01