1. 西安交通大学城市学院机械工程系,陕西 西安 7100182. 西安交通大学化学工程与技术学院,陕西 西安 710049
收稿日期:
2019-03-22修回日期:
2019-05-22出版日期:
2020-02-22发布日期:
2020-02-19通讯作者:
吴震基金资助:
陕西省自然科学基金Study on characteristics of hydrogen fuel cell power generation system using metal hydride as solid-state hydrogen source
Hongli YAN1, Zuowei LU1, Zhiliang JING1, Zhen WU2*1. Department of Mechanical Engineering, City College, Xi'an Jiaotong University, Xi'an, Shaanxi 710018, China2. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Received:
2019-03-22Revised:
2019-05-22Online:
2020-02-22Published:
2020-02-19摘要/Abstract
摘要: 以基于金属氢化物的固态储氢技术,与质子交换膜燃料电池(PEMFC)耦合,搭建了基于金属氢化物固态氢源的氢燃料电池动力系统试验台,测试了吸氢压力、放氢温度、氢流量等关键操作参数对氢燃料电池动力系统性能的影响。结果表明,当吸氢压力大于等于0.60 MPa时,固态储氢反应器放氢流量稳定的时间最长可达4500 s以上。当放氢温度大于60℃时,储氢反应器能完全释放氢气,且放氢时间基本相同。放氢流量越小,氢燃料电池动力系统稳定工作的时间越长。
引用本文
闫红丽 陆佐伟 敬志良 吴震. 基于金属氢化物固态氢源的氢燃料电池动力系统特性的研究[J]. 过程工程学报, 2020, 20(2): 237-244.
Hongli YAN Zuowei LU Zhiliang JING Zhen WU. Study on characteristics of hydrogen fuel cell power generation system using metal hydride as solid-state hydrogen source[J]. Chin. J. Process Eng., 2020, 20(2): 237-244.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219173
http://www.jproeng.com/CN/Y2020/V20/I2/237
参考文献
[1]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学, 2012, 18(1):1-13 [2] Kim SH, Miesse CM, Lee HB, et al.Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone[J].Applied Energy, 2014, 134(1):382-391 [3] Bao C, Wang Y, Feng DL, et al.Macroscopic modeling of sold oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system [J].Progress in Energy and Combustion Science, 2018, 66 (1):83-104 [4]吴峰,叶芳,郭航,等.燃料电池在航天中的应用[J].电池, 2007, 37(3):238-240 [5]Okumus E, San FGB, Okur O, et al.Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle[J].International Journal of Hydrogen Energy, 2016, 42(4):2691-2697 [6]Zhao L, Li FG, Li ZY, et al.Thermodynamic analysis of the emptying process of compressed hydrogen tanks[J].International Journal of Hydrogen Energy, 2019, 44(7):3993-4005 [7]Moreno-Blanco J, Petitpas G, Espinosa-Loza F, et al.The fill density of automotive cryo-compressed hydrogen vessels[J].International Journal of Hydrogen Energy, 2019, 44(2):1010-1020 [8] 杨小平,田景文.固体储氢材料的研究进展[J].化工管理, 2015, 16(1):95-97 [9] 郭浩,杨洪海.固体储氢材料的研究现状及发展趋势 [J].化工新型材料, 2016, 44(9):19-21 [10] Wei TY, Lim KL, Tseng YS, et al.A review on the characterization of hydrogen in hydrogen storage materials [J].Renewable and Sustainable Energy Reviews, 2017, 79(1):1122-1133 [11] Heubner F, Hilger A, Kardjilov N, et al.In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage [J].Journal of Power Sources, 2018, 397(1):262-270 [12] Lototskyy M, Yartys VA.Comparative analysis of the efficiencies of hydrogen storage systems utilizing solid state H storage materials[J].Journal of Alloys and Compounds, 2015, 645(1):365-373 [13]Meng XY, Yang FS, Bao ZW, et al.Theoretical study of a novel solar trigeneration system based on metal hydrides[J].Applied Energy, 2010, 87(6):2050-2061 [14]Meng XY, Wu Z, Bao ZW, et al.Performance simulation and experimental confirmation of a mini-channel metal hydrides reactor[J].International Journal of Hydrogen Energy, 2013, 38(35):15242-15253 [15]Yang FS, Zhang ZX, Gao DF, et al.Simulation study on the outlet flow dynamics of a hydride-based hydrogen storage canister for medical use[J].International Journal of Hydrogen Energy, 2014, 39(12):6548-6557 [16]Song MY, Kwak YJ, Lee SH, et al.Hydriding and dehydriding characteristics of LiBH4 and transition metals-added magnesium hydride[J].Materials Research Bulletin, 2013, 48(7):2476-2481 [17]花磊,杨福胜,孟翔宇,等.金属氢化物氢化脱氢反应动力学模型研究进展[J].化工进展, 2010, 29(3):413-429 [18]Yan Q, Toghiani H, Causey H.Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes[J].Journal of Power Sources, 2006, 161(1):492-502 [19]周靖,张晓维,谈金祝,等.操作参数对 性能的影响[J].南京工业大学学报, 2013, 35(4):79-81 [20]耿东森,岳瑞娟,李培金.操作条件对质子交换膜燃料电池性能的影响[J].北京化工大学学报, 2005, 32(4):44-47 |
相关文章 15
[1] | 朱馨彤 何欢 朱润云 徐志昂 韩丰霞 普红平. 两室气体互通对光合微生物燃料电池性能的影响[J]. 过程工程学报, 2021, 21(3): 314-322. |
[2] | 丁建军 彭小伟 韩业君. 厌氧活性污泥产电特性及产电过程微生物群落变化[J]. 过程工程学报, 2019, 19(1): 209-215. |
[3] | 尧兢 朱鹏飞 任佳伟 吴震. 耦合相变储热的金属氢化物反应器吸氢过程模拟[J]. 过程工程学报, 2018, 18(5): 1093-1101. |
[4] | 薄涛 季民. 筒状单室不锈钢电极微生物燃料电池回收重金属铅可行性分析[J]. 过程工程学报, 2018, 18(4): 858-865. |
[5] | 张小婷彭罗李振轮. 基于降低阳极活化过电势的MFC性能优化研究进展[J]. , 2014, 14(3): 527-534. |
[6] | 张东堂程昌汪夏燕夏定国. 微流控法合成石墨烯负载的PtNi燃料电池阴极催化剂及其性能[J]. , 2013, 13(4): 698-703. |
[7] | 宋天顺吴夏芫范平周楚新. 以加热预处理污泥上清液为底物的微生物燃料电池基础特性[J]. , 2012, 12(5): 844-848. |
[8] | 杨波朱凯亮鲁雄刚李志林吴铸吴广兴李重河. TiFe基储氢合金的CaZrO3坩埚制备及储氢性能[J]. , 2012, 12(5): 849-856. |
[9] | 姚传好李钒李翔杨帆徐梦迪夏定国. 聚合物电解质膜燃料电池用电催化剂非碳载体的研究进展[J]. , 2012, 12(2): 353-360. |
[10] | 吴夏芫宋天顺支银芳周楚新俞俊杰朱隽瑶. 小球藻生物阴极型微生物燃料电池的基础特性[J]. , 2012, 12(1): 131-135. |
[11] | 岳学海赵书菊王许云郭庆杰. 厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性[J]. , 2011, 11(2): 199-203. |
[12] | 吴锋刘延红吴川. 乙二醇稳定的Pt/C催化剂的制备与表征[J]. , 2009, 9(6): 1198-1203. |
[13] | 叶晔捷宋天顺徐源陈英文祝社民沈树宝. 微生物燃料电池产电的影响因素[J]. , 2009, 9(3): 526-530. |
[14] | 李顶杰何辉卢翠香李浩然杜竹玮. 串/并联微生物燃料电池的性能[J]. , 2009, 9(2): 338-343. |
[15] | 何辉冯雅丽李浩然李顶杰. 利用小球藻构建微生物燃料电池[J]. , 2009, 9(1): 133-137. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3389