1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 1001902. 中国石油大学(北京)重质油国家重点实验室,北京 102249
收稿日期:
2019-01-22修回日期:
2019-03-31出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
张楠基金资助:
国家自然基金重点联合项目;中国科学院战略性先导科技专项Effect of boundary conditions on particle?fluid convection heat transfer
Li SUN1,2, Nan ZHANG1*, Xinhua LIU1, Yiping FAN21. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. State Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249, China
Received:
2019-01-22Revised:
2019-03-31Online:
2019-12-22Published:
2019-12-22摘要/Abstract
摘要: 对单个球形颗粒与周围流体的对流传热进行数值模拟,考察了等温边界、等热流量边界和流固耦合边界条件的影响。结果表明,流固耦合边界和等温边界所得时均面积加权努塞尔数与经验公式计算结果基本一致,等热流量边界模拟结果大于其它两种边界条件结果。时间平均局部面积加权努塞尔数的分布表明,当流动稳定且不发生分离时,努塞尔数从前滞点到后滞点逐渐减小;当出现非稳态涡旋时,努塞尔数从前滞点到分离角附近逐渐减小并出现最小值,后逐渐增大直至后滞点。
引用本文
孙丽 张楠 刘新华 范怡平. 边界条件对颗粒–流体对流传热的影响[J]. 过程工程学报, 2019, 19(6): 1075-1084.
Li SUN Nan ZHANG Xinhua LIU Yiping FAN. Effect of boundary conditions on particle?fluid convection heat transfer[J]. Chin. J. Process Eng., 2019, 19(6): 1075-1084.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219118
http://www.jproeng.com/CN/Y2019/V19/I6/1075
参考文献
[1] 刘威威, 高豪, 秦云龙, 等. 基于 CFX 的多腔回转炉中催化剂颗粒加热的数值模拟 [J]. 过程工程学报, 2013, 13(6): 908-914. [2] 米翠丽, 樊孝华, 魏刚, 等. 热解温度对生物质和煤成焦特性的影响 [J]. 生物质化学工程, 2014, 48(6): 36-42. [3] 刘国庆, 刘清才, 姚璐, 等. 干熄焦除尘灰与低灰煤混合燃烧特性及动力学 [J]. 过程工程学报, 2015, 15(2): 272-277. [4] 王维, 卢旭晨, 李佑楚. 循环流化床燃烧器的一维拟流体数值模拟 [J]. 过程工程学报, 2004, 4(5): 385-390. [5] 侯凤云, 吕清刚, 那永洁, 等. 湿污泥颗粒的流化床干燥实验及模型 [J]. 过程工程学报, 2007, 7(4): 646-651. [6] Ranz W E, Marshall W R, Jr. Evaporation from Drops, Parts I [J]. Chemical Engineering Progress, 1952, 48(3): 141-146. [7] Ranz W E, Marshall W R, Jr. Evaporation from Drops, Parts II [J]. Chemical Engineering Progress, 1952, 48(4): 173-180. [8] Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles [J]. AIChE Journal, 1972, 18(2): 361-371. [9] Imai T, Murayama T, Ono Y. The estimation of convective heat transfer coefficients between a spherical particle and fluid at lower Reynolds number [J]. ISIJ International, 1995, 35(12): 1438-1443. [10] Proudman I, Pearson J R A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder [J]. Journal of Fluid Mechanics, 1957, 2(3): 237-262. [11] Acrivos A, Taylor T D. Heat and mass transfer from single spheres in stokes flow [J]. Physics of Fluids, 1962, 5(5): 387-394. [12] Rimmer P L. Heat transfer from a sphere in a stream of small Reynolds number [J]. Journal of Fluid Mechanics, 1968, 32(1): 1-7. [13] Choudhury P N, Drake D G. Unsteady heat transfer from a sphere in a low Reynolds number flow [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(1): 23-36. [14] Dennis S C R, Walker J D A, Hudson J D. Heat transfer from a sphere at low Reynolds number [J]. Journal of Fluid Mechanics, 1973, 60(2): 273-283. [15] Clift,J.R. Grace M.E. Weber, Bubbles, Drops and Particles [M]. Academic Press, New York, 1978. [16] Kendoush A A. Low Prandtl number heat transfer to fluids flowing past an isothermal spherical particle [J]. International Journal of Heat and Fluid Flow, 1995, 16(4): 291-297. [17] Feng Z G, Michaelides E E. Unsteady heat transfer from a sphere at small Peclet numbers [J]. Journal of Fluid Engineering, 1996, 118(1): 96-102. [18] Mansoorzadeh S, Pain C C, Oliveira C R E D, et al. Finite element simulations of incompressible flow past a heated/cooled sphere [J]. International Journal for Numerical Methods in Fluids, 1998, 28(6): 903-915. [19] Feng Z G, Michaelides E E. A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers [J]. International Journal of Heat and Mass Transfer, 2000, 43(2): 219-229. [20] Bagchi P, Ha M Y, Balachandar S. Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow [J]. Journal of Fluids Engineering, 2001, 123(2): 347-358. [21] Balachandar S, Ha M Y. Unsteady heat transfer from a sphere in a uniform cross-flow [J]. Physics of Fluids, 2001, 13(12): 3714-3728. [22] Alassar R S, Badr H M. Heat convection from a sphere placed in a fluctuating free stream [J]. AIChE Journal, 2007, 53(7): 1670-1677. [23] Koizumi H, Umemura Y, Hadno S, et al. Heat transfer performance and the transition to chaos of mixed convection around an isothermally heated sphere placed in a uniform, downwardly directed flow [J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14): 2602-2614. [24] Krishnan S, Kaman A. Effect of blockage ratio on drag and heat transfer from a centrally located sphere in pipe flow [J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(3): 396-414. [25] Song D, Gupta R K, Chhabra R P. Effect of blockage on heat transfer from a sphere in power-law fluids [J]. Industrial and Engineering Chemistry Research, 2010, 49(49): 3849-3861. [26] Song D, Gupta R K, Chhabra R P. Heat transfer to a sphere in tube flow of power-law liquids [J]. International Journal of Heat and Mass Transfer, 2012, 55(7-8): 2110-2121. [27] Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers [J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1343-1354. [28] Gupta A K, Mishra G, Nirmalkar N, et al. Effect of confinement on heat transfer in aqueous nanofluids from a heated sphere [J]. Powder Technology, 2018, 325(1): 576-596. [29] Hema Sundar Raju B, Nath D, Pati S. Effect of Prandtl number on thermo-fluidic transport characteristics for mixed convection past a sphere [J]. International Communications in Heat and Mass Transfer, 2018, 98(1): 191-199. [30] Dhole S D, Chhabra R P, Eswaran V. A numerical study on the forced convection heat transfer from an isothermal and isoflux sphere in the steady symmetric flow regime [J]. International Journal of Heat and Mass Transfer, 2006, 49(5-6): 984-994. [31] Imai T, Mrrayama T, Ono Y. The effect of structure of packed beds on the convective heat transfer coefficient between particle and liquid [J]. ISIJ International, 1994, 34(10): 777-783. [32] 张楠. 基于EMMS的介尺度传质模型及其在循环流化床锅炉燃烧模拟中的应用.[D]. 2010. [33] Wu M H, Wen C Y, Yen R H, et al. Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number [J]. Journal of Fluid Mechanics, 2004, 515(1): 233-260. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[12] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[13] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
[14] | 卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438. |
[15] | 南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3359