1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 1001902. 中国科学院大学化学工程学院,北京 1000493. 中国科学院大学化学科学学院,北京 100049
收稿日期:
2019-01-23修回日期:
2019-04-15出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
葛蔚基金资助:
国防基础科研科学挑战专题项目;高芳烃高含氮重油催化转化反应基础研究;中国科学院前沿科学重点研究项目;中国科学院信息化专项课题Hard-sphere/pseudo-particle modeling (HS-PPM) for hypersonic rarefied gas flow
Qi ZHAO1,2, Mingcan ZHAO1,2, Linbo MA1,3, Wei GE1,2*1. State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China3. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2019-01-23Revised:
2019-04-15Online:
2019-12-22Published:
2019-12-22Contact:
Wei GE Supported by:
;Key Research Program of Frontier Sciences of Chinese Academy of Sciences摘要/Abstract
摘要: 发展了适应高超声速稀薄流动的硬球-拟颗粒模拟(HS-PPM),并分别采用硬球分子动力学模拟(HS)、HS-PPM和直接模拟蒙特卡洛(DSMC)对马赫数为5、努森数为0.8的圆球绕流进行模拟,证明了HS-PPM可以得到更接近HS的模拟结果。对雷诺数100、马赫数5~19的三维圆球绕流,采用HS-PPM模拟得到了填充率0.01~0.08、完全热边界和完全滑移边界条件下的曳力系数,与HS模拟结果的一致性较好;模拟了马赫数24、努森数0.11~4.55的零攻角三维尖锥绕流,结果与文献中DSMC的模拟结果相符。研究验证了HS-PPM处理高超声速稀薄气体流动的可行性。
引用本文
赵祺 赵明璨 马琳博 葛蔚. 硬球-拟颗粒模拟高超声速稀薄气体流动[J]. 过程工程学报, 2019, 19(6): 1093-1100.
Qi ZHAO Mingcan ZHAO Linbo MA Wei GE. Hard-sphere/pseudo-particle modeling (HS-PPM) for hypersonic rarefied gas flow[J]. Chin. J. Process Eng., 2019, 19(6): 1093-1100.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219120
http://www.jproeng.com/CN/Y2019/V19/I6/1093
参考文献
[1] Bird G A. The DSMC method [M]. CreateSpace Independent Publishing Platform, 2013:13. [2] Bird G A. Approach to translational equilibrium in a rigid sphere gas [J]. The Physics of Fluids, 1963, 6(10): 1518-1519. [3] Antonov S, Ivanov M, Kashkovskii A, et al. Influence of atmospheric rarefaction on aerodynamic characteristics of flying vehicles [J]. Rarefied Gas Dynamics, 1990: 522-530. [4] Et Defense A E, Les Mureaux F. Computation of Transitional Flows Around Three-Dimensional Re-Entry Bodies [J]. Rarefied Gas Dynamics: Space Science and Engineering, 1992: 161. [5] Moss J N, Price J M. DSMC simulation of OREX entry [C]//Proc. Int. Symp. Rarefied Gas Dyn., 20th, Beijing, 1996. [6] Ivanov M, Markelov G, Gimelshein S, et al. High-altitude capsule aerodynamics with real gas effects [J]. Journal of Spacecraft and Rockets, 1998, 35(1): 16-22. [7] Ge W, Li J. Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization [J]. Chemical Engineering Science, 2003, 58(8): 1565-1585. [8] 葛蔚, 麻景森, 张家元, 等. 复杂流动多尺度模拟中的粒子方法 [J]. 科学通报, 2005, 50(9): 841-853. [9] 沈国飞. 纳微流动的分子动力学模拟 [D]. 中国科学院研究生院(过程工程研究所), 2010: 73-98. [10] Zhang C, Shen G, Li C, et al. Hard-sphere/pseudo-particle modelling (HS-PPM) for efficient and scalable molecular simulation of dilute gaseous flow and transport [J]. Molecular Simulation, 2016, 42(14): 1171-1182. [11] 张成龙. 硬球—拟颗粒—软球耦合模拟及其化工应用 [D]. 中国科学院大学, 2016: 23-65. [12] Chapman S, Cowling T G. The mathematical theory of non-uniform gases [M]. Cambridge University Press, 1970. [13] Chen F, Wei G. Statistical properties of pseudo-particle systems [J]. Particuology, 2010, 8(4): 332-342. [14] Bird G A, Broadwell J E, Vogenitz F W. Leading edge flow by the Monte Carlo direct simulation technique [J]. AIAA Journal, 1971, 8(3): 504-510. [15] Santos W. Aerothermodynamic characteristics of flat-nose power-law bodies in low-density hypersonic flow [C]//22nd Applied Aerodynamics Conference and Exhibit. 2004: 5381. [16] Santos W, Lewis M J. Calculation of shock wave structure over power law bodies in hypersonic flow [J]. Journal of Spacecraft and Rockets, 2005, 42(2): 213-222. [17] Santos W. Some Extentions to the Aerothermodynamic Performance Study of Flat-Nose Power-Law Bodies [J]. Nature Immunology, 2013, 2(2): 172-180. [18] Bailey A, Hiatt J. Free-flight measurements of sphere drag at subsonic, transonic, supersonic, and hypersonic speeds for continuum, transition, and near-free-molecular flow conditions [R]. Arnold Engineering Development Center Arnold AFS TN, 1971. [19] Takata G Y, Vogenitz F W. Rarefied hypersonic flow about cones and flat plates by Monte Carlo simulation [J]. AIAA Journal, 2015, 9(1): 94-100. [20] Geiger R. Semi-Annual Report [R]. DAH C04-67-C, 1968. [21] Horstman C C, Kussoy M I. Cone drag in rarefied hypersonic flow [J]. AIAA Journal, 2015, 8(2): 315-320. |
相关文章 1
[1] | 张旭斌;许春建;周明. 真空下同轴圆筒间分子蒸馏过程的数值模拟[J]. , 2005, 5(1): 97-102. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3361