删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

全固态锂离子电池技术进展及现状

本站小编 Free考研考试/2022-01-01

刘鲁静, 贾志军, 郭 强, 王 毅*, 齐 涛
中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190
收稿日期:2018-11-25修回日期:2019-02-22出版日期:2019-10-22发布日期:2019-10-22
通讯作者:王毅

基金资助:钯基双金属催化剂的设计制备及其在氧气电还原过程中的表界面问题研究;液流锂离子电池电极反应的界面微观机理及动力学研究

Research progress and current status of all-solid-state lithium battery

Lujing LIU, Zhijun JIA, Qiang GUO, Yi WANG*, Tao QI
National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:2018-11-25Revised:2019-02-22Online:2019-10-22Published:2019-10-22
Contact:Yi -WANG






摘要/Abstract


摘要: 锂离子电池电解质多为有机液体,易燃易爆、安全性差。用固态电解质制备的全固态锂离子电池,具有电化学窗口宽、能量密度大和安全性高等优点,是电动汽车和规模化储能应用的理想化学电源。本工作主要介绍了全固态电解质的电解质材料及电极/电解质界面调控与机理问题,为改善固/固界面相容性及降低界面阻抗方面提供解决方案。阐述了目前主流的正负极材料、全固态锂离子电池的设计及目前的专利申请状况,简要讨论了全固态锂离子电池面临的主要问题,并从产业应用角度展望了其应用现状和未来发展趋势,为从业者全面了解全固态电池的发展提供有利依据。

引用本文



刘鲁静 贾志军 郭强 王毅 齐涛. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909.
Lujing LIU Zhijun JIA Qiang GUO Yi WANG Tao QI. Research progress and current status of all-solid-state lithium battery[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 900-909.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218331
http://www.jproeng.com/CN/Y2019/V19/I5/900







[1] Kanno R, Hata T, Kawamoto Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1–2):97-104.
[2] Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[3] Zheng N, Bu X, Feng P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 35(7):428-32.
[4] B A Boukamp, R A Huggins. Mat. Res. Fast ionic conductivity in lithium nitride[J]. Materials Research Bulletin, 1978, 13(1):23-32.
[5] Yu X, Bates J B, Jellison G E, et al. A stable thin film lithium electrolyte: lithium phosphorus oxynitride[J]. Journal of the electrochemical society, 1997, 144(2):524-532.
[6] Li Y, Xu H, Chiem P H, et al. A stable perovskite electrolyte in moist air for Li-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28):1433-7851.
[7] Birke P, Scharner S, Huggins R A et al. Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast Ion Conducting Li0.29La0.57TiO3 Perovskite Type Compound[J]. Journal of The Electrochemical Society, 1997, 144: L167–L169.
[8] Knauth P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14):911-916.
[9] Oguni M, Inaguma Y, Itoh M, et al. Calorimetric and electrical studies on the positional disorder of lithium ions in lithium lanthanum titanate[J]. Solid State Communications, 1994, 91(8):627-630.
[10] Cussen E J. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+, Conductors[J]. Cheminform, 2006, 37(15):412-413.
[11] Mo Y, Ong S P, Ceger G. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material[J]. Chemistry of Materials, 2012, 24(1):15–17.
[12] Wan H, Peng G, Yao X, et al. Cu2 ZnSnS4 /graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4:59-65.
[13] Tetsuya A, Akihiro S, Satoru O, et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4V Class Bulk-Type All-Solid-State Batteries[J]. Advanced Materials, 2018, 1803075
[14] Yao X, Liu D, Wang C, et al. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life[J]. Nano Letter. 2016, 16, 7148-7154.
[15] Ong S P, Mo Y, Richards W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li[subscript 10±1]MP[subscript 2]X[subscript 12] (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science, 2012, 6(1):148-156.
[16] Yoon K, Kim J J, Seong W M, et al. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery[J]. Scientific Reports, 2018, 8(1):8066.
[17] Muramatsu H, Hayashi A, Ohtomo T, et al. Structural change of Li2S–P2S5, sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1):116-119.
[18] Inaguma Y, Chen L, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10):689-693.
[19] Culver S P, Koerver R, Krauskopf T, et al. Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries[J]. Chemistry of Materials, 2018, 30: 4179-4192.
[20] Ohta N, Takada K, Zhang L, et al. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification ?[J]. Advanced Materials, 2006, 18(17):2226-2229.
[21] Takada K. Interfacial nanoarchitectonics for solid-state lithium batteries[J]. Langmuir, 2013, 29(24):7538-7541.
[22] Xu X, Takada K, Watanabe K, et al. Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batterie[J]. Chemistry of Materials, 2011, 23: 3798–3804.
[23] Woo J H, Trecey J E, Cavanagh A S, et al. Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries[J]. Journal of the Electrochemical Society, 2012, 159(7):A1120-A1124.
[24] Jin Y, Mcginn P J. Li7La3Zr2O12, electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5, solid-state battery[J]. Journal of Power Sources, 2013, 239(10):326-331.
[25] Li Y, Chen X, Dolocan A, et al. Garnet Electrolyte with an Ultralow Interfacial Resistancefor Li-Metal Batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
[26] Shao Y, Wang H, Gong Z, et al. Drawing a Soft Interface: An Effective InterfacialModification Strategy for Garnet-Type Solid-State Li Batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218.
[27] Tai C L, Roddatos V, Vinod C C, et al. Li7La3Zr2O12 Interface Modification for Li-dendrite Prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10617–10626.
[28] Kotobuki M, Munakata H, Kanamura K, et al. Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode[J]. Journal of the Electrochemical Society, 2010, 157(10):A1076-A1079.
[29] Wakayma H, Yonekura H, Kawai Y. Three-Dimensional Bicontinuous Nanocomposite from a Self-Assembled Block Copolymer for a High-Capacity All-Solid-State Lithium Battery Cathode[J]. Chemistry of Materials, 2016, 28: 4453–4459.
[30] Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3, solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238(28): 53-56.
[31] Kato T, Hamanaka T, Yamamoto K, et al. In-situ, Li7La3Zr2O12 /LiCoO2, interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260(16): 292-298.
[32] Jan V D B, Afyon S, Rupp J L M. Interface‐Engineered All Solid State Li Ion Batteries Based on Garnet Type Fast Li+ Conductors[J]. Advanced Energy Materials, 2016, 6(19): 1600736.
[33] Wang C, Zhang L, Xie H, et al. Mixed Ionic-Electronic Conductor Enabled Effective Cathode-Electrolyte Interface in All Solid State Batteries[J]. Nano Energy, 2018, 50.
[34] Dong T, Zhang J, Xu G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-lifein a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5): 1197-1203.
[35] Wei Z, Chen S, Wang J, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394: 57-66.
[36] Wang L P, Zhang X D, Wang T S, el. Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers[J]. Advanced Energy Materials. 2018, 8, 1801528
[37] Liu Y, Li C, Li B, et al. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‐State Li Batteries[J]. Advanced Energy Materials, 2018, 8(16): 1702374.
[38] Palacin M R. Recent advances in rechargeable battery materials: Achemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575.
[39] Patil A, Patil V, Wook S D, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8–9): 1913-1942.
[40] 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626.
Li Y, Ding F, Sang L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626.
[41] 张波, 崔光磊, 刘志宏,等. 无机固态锂电池专利分析[J]. 储能科学与技术, 2017, 6(2):307-315.
Zhang B, Cui G, Liu Z H, et al. Patentmetrics on lithium-ion battery based on inorganic solid electrolyte[J]. Energy Storage Science and Technology, 2017, 6(2): 307-315.
[42] Jeffrey L, Yongming S, David G.M, et al. A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors[J]. Advanced Materials. 2018, 30, 1804142.





[1]刘长久邢春晓李培培. 非晶态氢氧化镍复合碳纳米管电极材料的电化学性能[J]. , 2011, 11(3): 529-532.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3337
相关话题/技术 材料 过程 设计 科学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 滚筒端面对颗粒物料轴向混合过程影响的离散模拟
    侯全勋1,2,董世杰2,3,张泉5,冯勇进5,王晓宇5,刘晓星2,4*1.中国矿业大学(北京)化学与环境工程学院,北京1000832.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001903.中国石油大学(北京)重质油国家重点实验室,北京1022494.中国科学院大学化学与化工学院,北 ...
    本站小编 Free考研考试 2022-01-01
  • 非线性光学晶体3BiCl3.7SC(NH2)2的合成及其转化过程
    白云鹤1,裴铁柱1,张良1,张宁2,马得佳1,尹秋响1,3,4,谢闯1,3,4*1.天津大学化工学院,天津3000722.山东益丰生化环保股份有限公司,山东滨州2565003.天津大学国家工业结晶工程技术研究中心,天津3000724.天津化学化工协同创新中心,天津300072收稿日期:2019-01 ...
    本站小编 Free考研考试 2022-01-01
  • 直接接触沸腾换热过程连续相特征提取及分布规律
    熊文真1,徐建新2,黄峻伟3*1.信阳职业技术学院,河南信阳4640002.昆明理工大学复杂有色金属资源清洁利用国家重点实验室,云南昆明6500933.云南农业大学机电工程学院,云南昆明650100收稿日期:2018-05-30修回日期:2018-08-18出版日期:2019-08-22发布日期:2 ...
    本站小编 Free考研考试 2022-01-01
  • LF精炼废渣水热浸出过程中主要矿相的溶解行为
    何环宇1,2,3,侯巍巍1,2,3,刘虹灵1,2,3,李杨1,2,3*1.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.湖北省冶金二次资源工程技术研究中心,湖北武汉4300813.武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081收稿日期:201 ...
    本站小编 Free考研考试 2022-01-01
  • 带钢保护气氛循环喷射冷却热工过程的数值模拟
    陈平安1,2,戴方钦1,2*,郭悦1,2,潘卢伟1,2,柯江军3,巫嘉谋4,雷远胜3,李运成41.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.高温材料与炉衬技术国家地方联合工程研究中心,湖北武汉4300813.黄石山力兴冶薄板有限公司,湖北黄石4351004.黄石 ...
    本站小编 Free考研考试 2022-01-01
  • MoSi2和(Mo,W)Si2涂层的宽温域氧化过程
    毛绍宝1,2,杨英2,李海庆3,张世宏1,2*1.安徽工业大学材料科学与工程学院,安徽马鞍山2430022.安徽工业大学现代表界面工程研究中心,安徽马鞍山2430023.中国运载火箭技术研究院航天材料及工艺研究所,北京100076收稿日期:2018-11-10修回日期:2019-01-18出版日期: ...
    本站小编 Free考研考试 2022-01-01
  • 战略性稀有金属资源绿色高值利用技术进展
    齐涛1,2*,王伟菁1,2,魏广叶1,2,朱兆武1,2,曲景奎1,2,王丽娜1,2,张绘1,21.中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京1001902.中国科学院过程工程研究所绿色过程与工程重点实验室,北京100190收稿日期:2019-03-01修回日期:2019-04- ...
    本站小编 Free考研考试 2022-01-01
  • “过程工程学”的由来及对“不可逆循环过程”的研究
    李佐虎*中国科学院过程工程研究所,北京100190收稿日期:2019-05-30出版日期:2019-06-28发布日期:2019-06-10通讯作者:李佐虎OriginofprocessengineeringandstudyontheirreversiblecircularprocessesZuoh ...
    本站小编 Free考研考试 2022-01-01
  • 绿色分离技术发展态势与展望
    刘会洲1,2,3,4*,刘小平1,3*,陈欣1,张超1,3,杨良嵘2,41.中国科学院文献情报中心,北京1001902.中国科学院过程工程研究所,北京1001903.中国科学院大学经济与管理学院图书情报与档案管理系,北京1001904.中国科学院大学化学与化工学院,北京100049收稿日期:2019 ...
    本站小编 Free考研考试 2022-01-01
  • 碱性介质活性氧调控技术在湿法冶金中的研究进展
    郑诗礼*,薛玉冬,杜浩,张懿中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,绿色过程与工程重点实验室,北京100190收稿日期:2019-02-28修回日期:2019-03-29出版日期:2019-06-28发布日期:2019-06-10通讯作者:郑诗礼基金资助:国家自然科学基金Rese ...
    本站小编 Free考研考试 2022-01-01