中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190
收稿日期:
2018-11-25修回日期:
2019-02-22出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
王毅基金资助:
钯基双金属催化剂的设计制备及其在氧气电还原过程中的表界面问题研究;液流锂离子电池电极反应的界面微观机理及动力学研究Research progress and current status of all-solid-state lithium battery
Lujing LIU, Zhijun JIA, Qiang GUO, Yi WANG*, Tao QINational Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-11-25Revised:
2019-02-22Online:
2019-10-22Published:
2019-10-22Contact:
Yi -WANG 摘要/Abstract
摘要: 锂离子电池电解质多为有机液体,易燃易爆、安全性差。用固态电解质制备的全固态锂离子电池,具有电化学窗口宽、能量密度大和安全性高等优点,是电动汽车和规模化储能应用的理想化学电源。本工作主要介绍了全固态电解质的电解质材料及电极/电解质界面调控与机理问题,为改善固/固界面相容性及降低界面阻抗方面提供解决方案。阐述了目前主流的正负极材料、全固态锂离子电池的设计及目前的专利申请状况,简要讨论了全固态锂离子电池面临的主要问题,并从产业应用角度展望了其应用现状和未来发展趋势,为从业者全面了解全固态电池的发展提供有利依据。
引用本文
刘鲁静 贾志军 郭强 王毅 齐涛. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909.
Lujing LIU Zhijun JIA Qiang GUO Yi WANG Tao QI. Research progress and current status of all-solid-state lithium battery[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 900-909.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218331
http://www.jproeng.com/CN/Y2019/V19/I5/900
参考文献
[1] Kanno R, Hata T, Kawamoto Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1–2):97-104. [2] Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386. [3] Zheng N, Bu X, Feng P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 35(7):428-32. [4] B A Boukamp, R A Huggins. Mat. Res. Fast ionic conductivity in lithium nitride[J]. Materials Research Bulletin, 1978, 13(1):23-32. [5] Yu X, Bates J B, Jellison G E, et al. A stable thin film lithium electrolyte: lithium phosphorus oxynitride[J]. Journal of the electrochemical society, 1997, 144(2):524-532. [6] Li Y, Xu H, Chiem P H, et al. A stable perovskite electrolyte in moist air for Li-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28):1433-7851. [7] Birke P, Scharner S, Huggins R A et al. Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast Ion Conducting Li0.29La0.57TiO3 Perovskite Type Compound[J]. Journal of The Electrochemical Society, 1997, 144: L167–L169. [8] Knauth P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14):911-916. [9] Oguni M, Inaguma Y, Itoh M, et al. Calorimetric and electrical studies on the positional disorder of lithium ions in lithium lanthanum titanate[J]. Solid State Communications, 1994, 91(8):627-630. [10] Cussen E J. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+, Conductors[J]. Cheminform, 2006, 37(15):412-413. [11] Mo Y, Ong S P, Ceger G. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material[J]. Chemistry of Materials, 2012, 24(1):15–17. [12] Wan H, Peng G, Yao X, et al. Cu2 ZnSnS4 /graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4:59-65. [13] Tetsuya A, Akihiro S, Satoru O, et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4V Class Bulk-Type All-Solid-State Batteries[J]. Advanced Materials, 2018, 1803075 [14] Yao X, Liu D, Wang C, et al. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life[J]. Nano Letter. 2016, 16, 7148-7154. [15] Ong S P, Mo Y, Richards W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li[subscript 10±1]MP[subscript 2]X[subscript 12] (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science, 2012, 6(1):148-156. [16] Yoon K, Kim J J, Seong W M, et al. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery[J]. Scientific Reports, 2018, 8(1):8066. [17] Muramatsu H, Hayashi A, Ohtomo T, et al. Structural change of Li2S–P2S5, sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1):116-119. [18] Inaguma Y, Chen L, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10):689-693. [19] Culver S P, Koerver R, Krauskopf T, et al. Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries[J]. Chemistry of Materials, 2018, 30: 4179-4192. [20] Ohta N, Takada K, Zhang L, et al. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification ?[J]. Advanced Materials, 2006, 18(17):2226-2229. [21] Takada K. Interfacial nanoarchitectonics for solid-state lithium batteries[J]. Langmuir, 2013, 29(24):7538-7541. [22] Xu X, Takada K, Watanabe K, et al. Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batterie[J]. Chemistry of Materials, 2011, 23: 3798–3804. [23] Woo J H, Trecey J E, Cavanagh A S, et al. Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries[J]. Journal of the Electrochemical Society, 2012, 159(7):A1120-A1124. [24] Jin Y, Mcginn P J. Li7La3Zr2O12, electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5, solid-state battery[J]. Journal of Power Sources, 2013, 239(10):326-331. [25] Li Y, Chen X, Dolocan A, et al. Garnet Electrolyte with an Ultralow Interfacial Resistancefor Li-Metal Batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. [26] Shao Y, Wang H, Gong Z, et al. Drawing a Soft Interface: An Effective InterfacialModification Strategy for Garnet-Type Solid-State Li Batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218. [27] Tai C L, Roddatos V, Vinod C C, et al. Li7La3Zr2O12 Interface Modification for Li-dendrite Prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10617–10626. [28] Kotobuki M, Munakata H, Kanamura K, et al. Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode[J]. Journal of the Electrochemical Society, 2010, 157(10):A1076-A1079. [29] Wakayma H, Yonekura H, Kawai Y. Three-Dimensional Bicontinuous Nanocomposite from a Self-Assembled Block Copolymer for a High-Capacity All-Solid-State Lithium Battery Cathode[J]. Chemistry of Materials, 2016, 28: 4453–4459. [30] Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3, solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238(28): 53-56. [31] Kato T, Hamanaka T, Yamamoto K, et al. In-situ, Li7La3Zr2O12 /LiCoO2, interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260(16): 292-298. [32] Jan V D B, Afyon S, Rupp J L M. Interface‐Engineered All Solid State Li Ion Batteries Based on Garnet Type Fast Li+ Conductors[J]. Advanced Energy Materials, 2016, 6(19): 1600736. [33] Wang C, Zhang L, Xie H, et al. Mixed Ionic-Electronic Conductor Enabled Effective Cathode-Electrolyte Interface in All Solid State Batteries[J]. Nano Energy, 2018, 50. [34] Dong T, Zhang J, Xu G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-lifein a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5): 1197-1203. [35] Wei Z, Chen S, Wang J, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394: 57-66. [36] Wang L P, Zhang X D, Wang T S, el. Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers[J]. Advanced Energy Materials. 2018, 8, 1801528 [37] Liu Y, Li C, Li B, et al. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‐State Li Batteries[J]. Advanced Energy Materials, 2018, 8(16): 1702374. [38] Palacin M R. Recent advances in rechargeable battery materials: Achemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575. [39] Patil A, Patil V, Wook S D, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8–9): 1913-1942. [40] 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. Li Y, Ding F, Sang L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. [41] 张波, 崔光磊, 刘志宏,等. 无机固态锂电池专利分析[J]. 储能科学与技术, 2017, 6(2):307-315. Zhang B, Cui G, Liu Z H, et al. Patentmetrics on lithium-ion battery based on inorganic solid electrolyte[J]. Energy Storage Science and Technology, 2017, 6(2): 307-315. [42] Jeffrey L, Yongming S, David G.M, et al. A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors[J]. Advanced Materials. 2018, 30, 1804142. |
相关文章 1
[1] | 刘长久邢春晓李培培. 非晶态氢氧化镍复合碳纳米管电极材料的电化学性能[J]. , 2011, 11(3): 529-532. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3337