1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
2. 中国科学院大学化工学院,北京 100049
3. 中国石油大学(北京)化学工程学院,北京 102249
收稿日期:
2018-12-13修回日期:
2019-03-05出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
韩永生基金资助:
国家自然科学基金资助项目 (U1302274)Synthesis and applications of silver nanoparticles with controlled morphologies
Kai WANG1,2, Han WANG1,2, Yu ZHOU1,3, Xiangyu DOU1,2, Yongsheng HAN1,2*1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Chemical Engineering, China University of Petroleum, Beijing 102249, China
Received:
2018-12-13Revised:
2019-03-05Online:
2019-10-22Published:
2019-10-22Supported by:
Projects (U1302274) supported by the National Science Foundation of China摘要/Abstract
摘要: 银纳米材料具有独特的物理性质,在光学、生物和催化等领域应用潜力巨大,是近年来材料领域的研究热点。银纳米材料的很多性能与其形貌密切相关,如枝状银纳米颗粒局部表面等离子体共振较强,不同形貌的银纳米颗粒裸露不同的晶面,导致其催化选择性不同。因此,控制合成特定形貌和结构的银纳米颗粒一直是该领域的重要研究方向。本工作综述了近年来银纳米颗粒形貌可控的合成方法,包括溶液还原法、晶种法、生物合成法、光诱导法、反应-扩散调控的动力学法和模板法等,比较了不同方法的优缺点,分析了不同合成方法的机理。重点介绍了基于反应和扩散调控的动力学方法,总结了其优点和普适性。调研了不同形貌银纳米颗粒在抑菌、局部等离子体共振和催化等领域的应用研究,分析了不同形貌银纳米颗粒的工业化应用前景,并对银纳米形貌的可控合成和应用进行了展望。
引用本文
王凯 汪涵 周榆 窦翔宇 韩永生. 形貌可控的银纳米颗粒合成及应用[J]. 过程工程学报, 2019, 19(5): 919-931.
Kai WANG Han WANG Yu ZHOU Xiangyu DOU Yongsheng HAN. Synthesis and applications of silver nanoparticles with controlled morphologies[J]. Chin. J. Process Eng., 2019, 19(5): 919-931.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218343
http://www.jproeng.com/CN/Y2019/V19/I5/919
参考文献
[1] Shi A C, Masel R I. The effects of gas adsorption on particle shapes in supported platinum catalysts[J]. Journal of Catalysis, 1989, 120(2): 421-431. [2] Falicov L M, Somorjai G A. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence[J]. Proceedings of the National Academy of Sciences, 1985, 82(8): 2207-2211. [3] Wiley B, Sun Y, Mayers B, et al. Shape‐controlled synthesis of metal nanostructures: the case of silver[J]. Chemistry-A European Journal, 2005, 11(2): 454-463. [4] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. science, 2007, 316(5825): 732-735. [5] Wang F, Li C, Sun L D, et al. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance[J]. Journal of the American Chemical Society, 2010, 133(4): 1106-1111. [6] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nature materials, 2008, 7(6): 442-453. [7] Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical reviews, 2011, 111(6): 3669-3712. [8] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395. [9] Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?[J]. The Journal of Physical Chemistry B, 2004, 108(3): 945-951. [10] Henglein A, Giersig M. Formation of colloidal silver nanoparticles: capping action of citrate[J]. The Journal of Physical Chemistry B, 1999, 103(44): 9533-9539. [11] Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction[J]. The Journal of Physical Chemistry C, 2009, 113(16): 6573-6576. [12] Li H, Xia H, Wang D, et al. Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water[J]. Langmuir, 2013, 29(16): 5074-5079. [13] Sun Y, Xia Y. Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold[J]. Advanced Materials, 2003, 15(9): 695-699. [14] Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing[J]. Nano letters, 2002, 2(2): 165-168. [15] Sun Y, Xia Y. Large‐Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self‐Seeding, Polyol Process[J]. Advanced Materials, 2002, 14(11): 833-837. [16] Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano letters, 2003, 3(7): 955-960. [17] Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons[J]. Nano Letters, 2004, 4(9): 1733-1739. [18] Im S H, Lee Y T, Wiley B, et al. Large-cale synthesis of silver nanocubes: the role of hcl in promoting cube perfection and monodispersity[J]. Angewandte Chemie, 2005, 117(14): 2192-2195. [19] Wiley B J, Chen Y, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice[J]. Nano letters, 2007, 7(4): 1032-1036. [20] Wiley B, Sun Y, Xia Y. Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species[J]. Langmuir, 2005, 21(18): 8077-8080. [21] Xia X, Zeng J, Oetjen L K, et al. Quantitative analysis of the role played by poly (vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals[J]. Journal of the American Chemical Society, 2012, 134(3): 1793-1801. [22] Song Y J, Wang M, Zhang X Y, et al. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires[J]. Nanoscale research letters, 2014, 9(1): 1-8. [23] Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates[J]. Advanced Materials, 2006, 18(13): 1745-1749. [24] Xiong Y, Washio I, Chen J, et al. Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions[J]. Langmuir, 2006, 22(20): 8563-8570. [25] Xiong Y, Siekkinen A R, Wang J, et al. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide[J]. Journal of Materials Chemistry, 2007, 17(25): 2600-2602. [26] Li L, Sun J, Li X, et al. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity[J]. Biomaterials, 2012, 33(6): 1714-1721. [27] Wang Y, Zheng Y, Huang C Z, et al. Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility[J]. Journal of the American Chemical Society, 2013, 135(5): 1941-1951. [28] Xia Y, Xiong Y, Lim B, et al. Shape‐controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? [J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103. [29] Zhang Q, Li W, Moran C, et al. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30? 200 nm and comparison of their optical properties[J]. Journal of the American Chemical Society, 2010, 132(32): 11372-11378. [30] Rajab M, Mougin K, Derivaz M, et al. Controlling shape and spatial organization of silver crystals by site-selective chemical growth method for improving surface enhanced Raman scattering activity[J]. Colloids and Surfaces A, 2015, 484(11): 508-517. [31] Zhang L, Wang Y, Tong L, et al. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air[J]. Langmuir, 2013, 29(50): 15719-15725. [32] Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties[J]. Chemistry of Materials, 2008, 20(16): 5186-5190. [33] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18): 1389-1393. [34] Belloni J. Photography: enhancing sensitivity by silver-halide crystal doping[J]. Radiation Physics and Chemistry, 2003, 67(3): 291-296. [35] Jin R, Cao Y C, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425(6957): 487-490. [36] Zhang J, Li S, Wu J, et al. Plasmon‐mediated synthesis of silver triangular bipyramids[J]. Angewandte Chemie, 2009, 121(42): 7927-7931. [37] Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement[J]. Langmuir, 2008, 24(18): 10407-10413. [38] Kabashin A V, Delaporte P, Pereira A, et al. Nanofabrication with pulsed lasers[J]. Nanoscale research letters, 2010, 5(3): 454-463. [39] Zhao Y, Chen A, Liang S. Shape-controlled synthesis of silver nanocrystals via γ-irradiation in the presence of poly (vinyl pyrrolidone) [J]. Journal of Crystal Growth, 2013, 372(6): 116-120. [40] Ganaie S U, Abbasi T, Abbasi S A. Green synthesis of silver nanoparticles using an otherwise worthless weed Mimosa (Mimosa pudica): Feasibility and process development toward shape/size control[J]. Particulate Science and Technology, 2015, 33(6): 638-644. [41] Logaranjan K, Raiza A J, Gopinath S C B, et al. Shape-and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity[J]. Nanoscale research letters, 2016, 11(1): 5201-5209. [42] Sathishkumar Y, Devarayan K, Ki C, et al. Shape-controlled extracellular synthesis of silver nanocubes by Mucor circinelloides[J]. Materials Letters, 2015, 159(7): 481-483. [43] Liu W, Yang T, Liu J, et al. Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8319-8326. [44] Che, P, Liu, W, Chang, X, et al. Multifunctional silver film with superhydrophobic and antibacterial properties[J]. Nano Research, 2016, 9(2):442-450. [45] Liu J; Yang T; Li C; et al. Reversibly switching silver hierarchical structures via reaction kinetics[J]. Scientific Reports, 2015, 5(11):14942-14949. [46] Yang T, Han Y, Li J. Manipulating silver dendritic structures via diffusion and reaction[J]. Chemical Engineering Science, 2015,138(12): 457-464. [47] Yang T, Wang H, Ji Z, et al. A switch from classic crystallization to non-classic crystallization by controlling the diffusion of chemicals[J]. CrystEngComm, 2014, 16(33):7633-7637. [48] Yang T, Liu J, Dai J, et al. Shaping particles by chemical diffusion and reaction[J]. CrystEngComm, 2017, 19(1): 72-79. [49] Wang H, Han Y, Li J. Dominant role of compromise between diffusion and reaction in the formation of snow-shaped vaterite[J]. Crystal Growth & Design, 2013, 13(5): 1820-1825. [50] Yang T, Han Y. Quantitatively relating diffusion and reaction for shaping particles[J]. Crystal Growth & Design, 2016, 16(5): 2850-2859. [51] Liu T, Liu W, Chen Y, et al. Silver morphology indicating the evolution of concentration heterogeneity[J]. Chemical Engineering & Processing: Process Intensification, 2018, 134(12): 38-44 [52] Fang Z, Tang K, Lei S, et al. CTAB-assisted hydrothermal synthesis of Ag/C nanostructures[J]. Nanotechnology, 2006, 17(12): 3008-3011. [53] Zhang Z, Han M. Template-directed growth from small clusters into uniform silver nanoparticles[J]. Chemical Physics Letters, 2003, 374(1): 91-94. [54] Fan L, Guo R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Crystal Growth and Design, 2008, 8(7): 2150-2156. [55] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods[J]. Chemical Communications, 2001, 7(3): 617-618. [56] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowire arrays[J]. Journal of Applied Physics, 2002, 91(5): 3243-3247. [57] 韩秀秀, 何文, 田修营, 等. 银系无机抗菌材料抗菌机理及应用[J]. 山东轻工业学院学报: 自然科学版, 2010, 24(1): 25-27. Han X X, He W, Tian X, et al. Antimicrobial mechanism of silver-typed inorganic antimicrobial materials and its application[J]. Journal of ShanDong Institute of Light Industry: Natural Science Edition, 2010, 24 (1): 25-27(in Chinese). [58] 张文钲, 王广文. 纳米银抗菌材料研发现状[J]. 化工新型材料, 2003, 31(2): 42-44. Zhang W Z, Wang G W. Research and development for antibacterial materials of silver nanoparticle[J]. New Chemical Materials, 2003, 31 (2): 42-44(in Chinese). [59] Hosono H, Abe Y. Silver ion selective porous lithium titanium phosphate glass-ceramics cation exchanger and its application to bacteriostatic materials[J]. Materials research bulletin, 1994, 29(11): 1157-1162. [60] Sabban S. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity FcεRI receptor[D]. University of Sheffield, 2011. [61] Soh N, Tokuda T, Watanabe T, et al. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide[J]. Talanta, 2003, 60(4): 733-745. [62] Hutter E, Cha S, Liu J F, et al. Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging[J]. The Journal of Physical Chemistry B, 2001, 105(1): 8-12. [63] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization[J]. Journal of the American Chemical Society, 2000, 122(38): 9071-9077. [64] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Phys. Chem, 2007, 58(10): 267-297. [65] Vellaichamy B, Periakaruppan P. Size and shape regulated synthesis of silver nanocapsules for highly selective and sensitive ultralow bivalent copper ion sensor application[J]. New Journal of Chemistry, 2017, 41(10): 4006-4013. [66] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B, 2003, 107(3): 668-677 [67] Skrabalak S E, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages[J]. Nature protocols, 2007, 2(9): 2182-2190. [68] Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers[J]. The Journal of chemical physics, 2004, 120(1): 357-366. [69] Rang M, Jones A C, Zhou F, et al. Optical near-field mapping of plasmonic nanoprisms[J]. Nano letters, 2008, 8(10): 3357-3363. [70] Moskovits M. Surface‐enhanced Raman spectroscopy: a brief retrospective[J]. Journal of Raman Spectroscopy, 2005, 36(6‐7): 485-496. [71] Mulvihill M J, Ling X Y, Henzie J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS[J]. Journal of the American Chemical Society, 2009, 132(1): 268-274. [72] Wiley B J, Im S H, Li Z Y, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. J. Phys. Chem. B, 2006, 110(32): 15666-15675. [73] Aizpurua J, Bryant G W, Richter L J, et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy[J]. Physical Review B, 2005, 71(23): 235420-235433. [74] Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402-235412. [75] Haes A J, Haynes C L, McFarland A D, et al. Plasmonic materials for surface-enhanced sensing and spectroscopy[J]. MRS bulletin, 2005, 30(5): 368-375. [76] Graff A, Wagner D, Ditlbacher H, et al. Silver nanowires[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2005, 34(1): 263-269. [77] Ariyanta H A, Yulizar Y. The shape conversion of silver nanoparticles through heating and its application as homogeneous catalyst in reduction of 4-nitrophenol[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 107(1): 012002. [78] Nie S, Liu C, Zhang Z, et al. Nitric acid-mediated shape-controlled synthesis and catalytic activity of silver hierarchical microcrystals[J]. RSC Advances, 2016, 6(26): 21511-21516. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 李伯森 张家赫 杨立鹏 李佳佳 邢春贤 张海涛. 基于离子凝胶电解质的TiO2(B)@C/CNT//AC准固态锂离子电容器[J]. 过程工程学报, 2021, 21(4): 479-487. |
[3] | 吴琴琴 陈拥军 董祥雷 邢辉 韩永生. 表面能对冰晶形貌的影响[J]. 过程工程学报, 2021, 21(4): 446-453. |
[4] | 屈艳玲 吴颉 马光辉. 基于纤维素纳米晶稳定的亚微米Pickering乳液制备[J]. 过程工程学报, 2021, 21(4): 454-462. |
[5] | 张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470. |
[6] | 刘剑 黄依倪 陈曦 易正戟. 甲基橙在Fe0-NaA-SSFSF固定床上的催化湿式H2O2氧化[J]. 过程工程学报, 2021, 21(2): 193-201. |
[7] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[8] | 刘建武 蒋晗 严生虎 张跃 沈介发 陈代祥. 微通道反应器中乙酰乙酸甲酯的连续流合成工艺[J]. 过程工程学报, 2020, 20(9): 1082-1088. |
[9] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[10] | 吴锦绣 贾恒俊 贾慧灵 李梅 柳召刚 郭京. 纳米荧光粉YPO4:2%Sm3+水热工艺条件的优化及荧光性能[J]. 过程工程学报, 2020, 20(5): 583-590. |
[11] | 代宝鑫 季言午 张思懿 朱宝忠 孙运兰. 铝–油酸/正庚烷基纳米浆体燃料液滴着火燃烧特性[J]. 过程工程学报, 2020, 20(4): 476-483. |
[12] | 张晶晶 李建 肖清贵 张绘 杜嬛 薛天艳 齐涛. 纳米Co/rGO磁性复合吸附材料的制备及对Cu2+的吸附性能[J]. 过程工程学报, 2020, 20(12): 1472-1482. |
[13] | 徐露露 张文旭 詹龙胜 李明喜. 纳米Nb粉对等离子弧喷焊铁基合金组织与耐磨性的影响[J]. 过程工程学报, 2020, 20(10): 1227-1233. |
[14] | 陶娇丽 黄永东 赵岚 朱凯 吴学星 周丹妮 苏志国 马光辉 刘红缨. 新型电荷型纳米盘的可控制备及其与细胞色素P450的结合性能[J]. 过程工程学报, 2019, 19(6): 1197-1203. |
[15] | 张娜 钟莉 段东平. 油酸辅助水热合成纳米钛酸锶的性能调控与表征[J]. 过程工程学报, 2019, 19(6): 1212-1219. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3339