衡阳师范学院功能金属有机化合物湖南省重点实验室,湖南 衡阳 421008
收稿日期:
2018-09-28修回日期:
2019-01-03出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
刘剑基金资助:
利用铁还原菌溶矿作用阻滞Fe(0) -PRB的钝化和促进铀尾矿渗滤液中铀酰的去除;微纤包覆活性炭-纳米零价铁复合材料对含铅废水修复研究Removal of Cr(VI) from water by granular activated carbon supported nanoscale zero-valent iron
Jian LIU*, Li HUANG, Gang PENG, Zhengji YIKey Laboratory of Functional Metal?Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang, Hunan 421008, China
Received:
2018-09-28Revised:
2019-01-03Online:
2019-08-22Published:
2019-08-15Contact:
LIU Jian 摘要/Abstract
摘要: 以Fe2+溶液为原料、NaBH4为还原剂,采用传统液相还原技术合成了颗粒活性炭(GAC)载纳米零价铁(nZVI)复合材料GAC-nZVI,用扫描电镜对GAC-nZVI进行表征,通过间歇实验考察了其对去除Cr(VI)的影响。结果表明,GAC能阻止nZVI颗粒聚集,合成的GAC-nZVI能有效去除水中的Cr(VI)。在Cr(VI)初始浓度50 mg/L、温度40℃和pH=2.0、投加GAC-nZVI 3.0 g/L的条件下反应5 min,Cr(VI)去除率为99.4%。pH=2.0?4.0时,处理后水中总铬浓度均低于1 mg/L,表明残留少量Cr(III)。随pH值和Cr(VI)浓度增加,Cr(VI)去除率降低;随反应温度和GAC-nZVI投加量增加,Cr(VI)去除率增加。准一级动力学模型可用于描述Cr(VI)的去除过程。相同条件下,GAC-nZVI去除Cr(VI)的反应速率常数达0.19797 min?1,为原颗粒活性炭反应速率常数0.0023 min?1的86倍。随pH值降低或反应温度和GAC-nZVI投加量增加,反应速率常数增加。
引用本文
刘剑 黄莉 彭钢 易正戟. 颗粒活性炭载纳米零价铁去除水中的Cr(VI)[J]. 过程工程学报, 2019, 19(4): 714-720.
Jian LIU Li HUANG Gang PENG Zhengji YI. Removal of Cr(VI) from water by granular activated carbon supported nanoscale zero-valent iron[J]. Chin. J. Process Eng., 2019, 19(4): 714-720.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218294
http://www.jproeng.com/CN/Y2019/V19/I4/714
参考文献
[1] Dong H R, Zeng Y L, Zeng G M, et al. EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron [J]. Sep. Purif. Technol., 2016, 165: 86-91. [2] Sheng G D, Hu J, Li H, et al. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study [J]. Chemosphere, 2016, 148: 227-232. [3] Fu R B, Yang Y P, Xu Z, et al. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI) [J]. Chemosphere, 2015, 138: 726-734. [4] Ponder S M, Darab J G, Mallouk T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron [J]. Environ. Sci. Technol., 2000, 34(12): 2564-2569. [5] Calabro P S, Moraci N, Suraci P. Estimate of the optimum weight ratio in zero-valent/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater [J]. J. Hazard. Mater., 2012, 207-208: 111-116. [6] Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles-A study with high resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. J. Phys. Chem. C, 2007, 111(19): 6939-6946. [7] Chang D Y, Chen T H, Liu H B, et al. A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution [J]. Chem. Eng. J.,2014, 244: 264-272. [8] Kanel S R, Greneche J, Choi H. Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material [J]. Environ. Sci. Technol., 2006, 40(6): 2045-2050. [9] Kanel S R, Manning B, Charlet L, Choi H. Removal of arsenic(III) from groundwater by nano scale zero-valent iron [J]. Environ. Sci. Technol., 2005, 39(5): 1291-1298. [10] Wei Y T, Wu S C, Yang S W, et al. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane [J]. J. Hazard. Mater., 2012, 211-212: 373-380. [11] Petala E, Dimos K, Douvalis A, et al. Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution [J]. J. Hazard. Mater., 2013, 261: 295-306. [12] Kim S A, Kamala-Kannan S, Lee K J, et al. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite [J]. Chem. Eng. J., 2013, 217: 54-60. [13] Zhang X, Lin S, Lu X Q, et al. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron [J]. Chem. Eng. J., 2010, 163(3): 243-248. [14] Kerkez D V, Tomasevic D D, Kozma G, et al. Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: A comparative study [J]. J.Taiwan Inst. Chem. E, 2014, 45(5): 2451-2461. [15] Diao Z H, Xu X R, Chen H, et al. Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism [J]. J. Hazard. Mater., 2016, 316: 186-193. [16] Kumar A, Jena H M. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2 [J]. Process Saf. Environ., 2017, 109: 63-71. [17] Wang W Q. Chromium(VI) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption [J]. Chemosphere, 2018, 190: 97-102. [18] AL-Othman Z A, Ali R, Naushad M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies [J]. Chem. Eng. J., 2012, 184: 238-247. [19] Huang L H, Zhou S J, Jin F, et al. Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution [J]. Colloid. Surface. A, 2014, 447: 59-66. [20] Tseng H H, Su J G, Liang C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene [J]. J. Hazard. Mater., 2011, 192(2): 500-506. [21] Shi L N, Zhang X, Chen Z L. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron [J]. Water Res., 2011, 45(2): 886-892. [22] Wang W, Zhou M H, Mao Q, et al. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst [J]. Catal. Commun., 2010, 11(11): 937-941. [23] Fu F L, Ma J, Xie L P, et al. Chromium removal using resin supported nanoscale zero-valent iron [J]. J. Environ. Manage., 2013, 128: 822-827. [24] Xu C H, Zhu L J, Wang X H, et al. Fast and Highly Efficient Removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC) [J]. Water Air Soil Poll., 2014, 225: 1845-1858. [25] Aravindhan R, Fathima A, Selvamurugan M, et al. Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass [J]. Clean Technol. Envir., 2012, 14: 727-735. [26] Li W X, Ye Y X. Modified wool as adsorbent for the removal of Cr(III) from aqueous solution: adsorption properties, isotherm and kinetics [J]. Res. Chem. Intermediat., 2015, 41: 803-812. [27] Zhou X B, Lv B H, Zhou Z M, et al. Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium (VI) removal [J]. Chem. Eng. J., 2015, 281: 155-163. [28] Liu T Y, Wang Z L, Zhao L, et al. Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater [J]. Chem. Eng. J., 2012, 189-190: 196-202. |
相关文章 9
[1] | 刘剑 黄依倪 陈曦 易正戟. 甲基橙在Fe0-NaA-SSFSF固定床上的催化湿式H2O2氧化[J]. 过程工程学报, 2021, 21(2): 193-201. |
[2] | 王爽 郭宏飞 赵斌 刘秀伍 曹吉林. 聚丙烯酸复合铝改性膨润土制备及其对Cr(VI)的吸附[J]. 过程工程学报, 2020, 20(1): 44-51. |
[3] | 赵长多 范美玲 杨晓博 胡文斌 夏启斌. 纳米零价铁对水溶液中钒离子的吸附性能[J]. 过程工程学报, 2018, 18(6): 1253-1260. |
[4] | 王浩聪陈芳芳王海洋李梦寒黄慧明张永强. L35-硫酸铵双水相体系萃取水溶液中Cr(VI)[J]. 过程工程学报, 2015, 15(5): 788-794. |
[5] | 陈方明陈洁渝. 矿物聚合物的合成及其对Cr(VI)的解毒与固化[J]. , 2015, 15(2): 330-335. |
[6] | 郭倩楠曾坚贤陈华俊喻谢张金斌. 聚季铵盐强化超滤处理铬(VI)[J]. , 2013, 13(6): 952-957. |
[7] | 李鹏飞杨良嵘李文松黄寅斌王娟孔鹏徐林刘会洲. 氨基功能化超顺磁性PGMA高分子微球去除废水中的铬(VI)[J]. , 2011, 11(4): 554-560. |
[8] | 向炜成胡鹏张星姚明水徐瑞芬袁方利. 纳米多孔二氧化钛空心球的水热法制备及其对Cr(VI)的吸附特性[J]. , 2011, 11(4): 678-683. |
[9] | 雷雪飞薛向欣. Cr(VI)-乙酸复合体系中硫酸盐掺杂的含钛高炉渣光催化还原Cr(VI)[J]. , 2008, 8(5): 901-907. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3306