1. 中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京 1001902. 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083
收稿日期:
2019-03-10修回日期:
2019-04-28出版日期:
2019-06-28发布日期:
2019-06-10通讯作者:
王志基金资助:
国家重点研发计划;国家自然科学基金Alloys preparation from refractory metal oxysalts by molten salt electro-deoxidation using liquid cathode
Zhi WANG1*, Mingyong WANG2, Wei WENG1,21. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Received:
2019-03-10Revised:
2019-04-28Online:
2019-06-28Published:
2019-06-10Contact:
Zhi WANG 摘要/Abstract
摘要: 针对难熔金属传统冶金流程长、能耗高和污染重的问题,介绍了以难熔金属含氧酸盐(如CaTiO3, NaVO3, Na2CrO4等)中间体直接熔盐电解(液态阴极)制取合金的短流程新过程。以熔点低、可溶、可电离的难熔金属含氧酸盐为电解反应物直接实现难熔金属的合金化,构建冶金?材料一体化的熔盐电解新体系,是缩短流程和实现冶金资源“快速成材”的创新路径。新过程弃用污染性工艺,环境友好,符合高效绿色冶金原则,有潜力成为一种普适性新方法。
引用本文
王志 王明涌 翁威. 难熔金属含氧酸盐电化学解离-合金化短流程绿色工艺[J]. 过程工程学报, 2019, 19(S1): 65-71.
Zhi WANG Mingyong WANG Wei WENG. Alloys preparation from refractory metal oxysalts by molten salt electro-deoxidation using liquid cathode[J]. Chin. J. Process Eng., 2019, 19(S1): 65-71.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219170
http://www.jproeng.com/CN/Y2019/V19/IS1/65
参考文献
参考文献: [1] Kroll W J. The production of ductile titanium[J]. Journal of The Electrochemical Society, 1940, 78: 35-47 [2] Hunter M A. Metallic titanium[J]. Journal of the American Chemistry Society, 1910, 32(3): 330-336 [3] Nickels L. Kroll process alternative emergies[J]. Metal Powder Report, 2013, 68(1): 27-29 [4] Zhao K, Wang Y W, Peng J P, Di Y Z, Liu K, Feng N X. Formation of Ti or TiC nanopowder from TiO2 and carbon powders by electrolysis in molten NaCl-KCl[J]. RSC Advance, 2016, 6: 8644-8650 [5] Kim C, Lee C R, Song Y E, Heo J, Choi S M, Lim D H, Cho J, Park C, Jang M, Kim C R. Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chemical Engineering Journal, 2017, 328(15), 703-707 [6] Fang D, Zhang X, Dong M, Xue X. A novel method to remove chromium, vanadium and ammonium from vanadium industrial waste water using a byproduct of magnesium-based wet flue gas desulfurization[J]. Journal of Hazardous Materials, 2017, 336(15): 8-20 [7] 张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006 [8] Grjotheim K, Kvande H, Li Q F, Qiu Z X. Metal production by molten salt electrolysis[M]. Beijing: China University of Mining and Technology Press, 1998 [9] Ginatta M V. Why produce titanium by EW[J]. Journal of the MineralsMetals and Materials Society, 2000, 52(5): 18-20 [10] Ginatta M V, Orsello G. Plant for the electrolytic production of reactive metals in molten salt baths[P]. US patent,4670121, 1987 [11] Cotarta A. Electrochemistry of molten LiCl-KCl-CrCl3and LiCl-KCl-CrCl2 mixtures[J]. Journal of Applied Electrochemistry,1997,27:651-658 [12] Tripathy P K. Electrodeposition of vanadium from a molten salt bath[J]. Journal of Applied Electrochemistry,1996,26:887-890 [13] Suzuki R O, Teranuma K, Ono K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2[J]. Metallurgical and Materials Transaction B, 2003, 34: 287-295 [14] Okabe T H, Oda T, Mitsuda Y. Titanium powder by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 156-163 [15] Jiao S Q, Zhu H M. Novel metallurgical process for titanium production[J]. Journal of Material Research, 2006, 21(9): 2172-2175 [16] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407: 361-364 [17] Chen G Z, Fray D J, Farthing T W. Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride[J]. Metallurgical and Materials Transaction B, 2001, 32(6): 1041-1052 [18] Suzuki R O, Fukui S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis[J]. Materials Transactions, 2004, 45(5): 1665-1671 [19] Suzuki R O. Direct reduction processes for titanium oxide in molten salt[J]. JOM, 2007, 59(1): 68-71 [20] 高玉明.熔盐电解法制取钨粉的试验与研究[D].沈阳:东北大学,1997 [21] 冯乃祥,孙阳,葛贵军.NaCl-Na2WO4-WO3系熔盐电解法制备超细钨粉的研究[J].稀有金属,2001,25(5):374-377 [22] 王旭,廖春发,杨文强,谢泉文.CaWO4-NaCl-CaCl2体系熔盐电解制备钨粉的表征与电化学分析[J].中国有色金属学报,2012,22(5):1482-1487 [23] Martinez A M, Castrillejo Y, Borresen B, Bermejo M R, Vega M. Chemical and electrochemical behavior of chromium in molten chlorides[J].Journal of Electroanalytical Chemistry, 2000,493: 1-7 [24] Propp J H, Laitinen H A. Electrochemical reduction products of chromate (VI) in molten lithium chloride-potassium chloride eutectic[J].Analytical Chemistry, 1969, 41:644-648 [25] Malysheva V V. High temperature electrometallurgical synthesis of tungsten and molybdenum carbides[J]. Russian Journal of Nonferrous Metals, 2011, 52:262-265 [26] Malyshev V V,Hab A I. Electrodepositited molybdenum powders and coatings and their physicalchemical properties (a survey)[J]. Materials Science, 2005,41(1): 25-38 [27] Gasviani N A, Khutsishvili M S, Abazadze M L.Electrochemical reduction of sodium metavanadate in an equimolar KCl-NaCl melt[J]. Russian Journal of Electrochemistry, 2006, 42: 931-937 [28] 王明涌,翁威,王东,王志,公旭中,郭占成. 一种难熔金属含氧酸盐直接电解制备金属的方法. 申请号:201410724949.6 [29] 王明涌, 刘洋, 翁威, 王志, 公旭中, 王东, 郭占成. 一种难熔金属含氧酸盐熔盐电解过程碱回收与熔盐循环方法. ZL201510222433.6 [30] 张燕.钒酸钠结晶及其转化工艺研究[D].北京:北京科技大学,2010 [31] Feng M, Zheng S L, Wang S N, Du H, Zhang Y. Solubility investigations in the quaternary NaOH-Na3VO4-Na2CrO4-H2O system at 40℃and 80 ℃[J]. Fluid Phase Equilibria, 2013, 360: 338-342 [32] Li J C, Guo Z C, Gao J T, Li J W. Evaluation of isothermal separating perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity[J]. Metallurgical and Materials Transaction B, 2014, 45: 1171-1174 [33] Cherginets V L. On studies of oxide solubilities in melts based on alkaline halides[J]. Electrochimica Acta, 1997, 42: 3619-3627 [34] 彭艳.钛酸盐相结构调控及其电化学解离的研究[D].北京:中国科学院过程工程研究所,2017 [35] Kim J W, Lee D N. Electrowinning of tungsten from fused bath composed of calcium chloride, calcium oxide and tundsten oxide[J]. Daehan Hwahak Hwoejee, 1966, 10(1), 32-43 [36] Clark R P, Reinhardt F W. Phase diagram for the ternary system CaCl2-KCl-CaCrO4[J]. Thermochimica Acta, 1976, 14, 113-129 [37] Xiao W, Wang X, Yin H, Zhu H, Mao X, Wang D. Verification and implication of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2[J]. RSC Advance, 2012, 19: 7588-7593 [38] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. One-step electrochemical preparation of metallic vanadium from sodium metavanadate in molten chlorides[J]. International Journal of Refractory Metals and Hard Materials, 2016, 55: 47-53 [39] Nitta K, Nohira T, Hagiwara R, Majima M, Inazawa S. Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt[J]. Electrochimica Acta, 2010, 55: 1278-1281 [40] Gasviani N A, Khutsishvili M S, Abazadze M L.Electrochemical reduction of sodium metavanadate in an equimolar KCl-NaCl melt[J]. Russian Journal of Electrochemistry, 2006, 42: 931-937 [41] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. Mechanism analysis of carbon contamination and the inhibition by an anode structure during soluble K2CrO4 electrolysis in CaCl2-KCl molten salt[J]. Journal of the Electrochemical Society, 2017, 164(12): E360-E366 [42] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2-KCl molten salt and its reduction mechanism[J]. Electrochimica Acta, 2016, 212: 162-170 [43] Weng W, Wang M Y, Gong X Z, Wang Z, Guo Z C. Dong Wang. Electrochemical preparation of V2O3 from NaVO3 and its reduction mechanism[J]. Journal of Wuhan University of Technology- MATERIALS SCIENCE EDITION. 2017, 32: 1019-1024 [44] W Weng W, Wang M Y, Gong X Z, Wang Z, Guo Z C. Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis[J]. Chinese Journal of Chemical Engineering, 2016, 24: 671-676 [45] Cherginets V L. On studied of oxide solubilities in melts based on alkaline halides[J]. Electrochimica Acta, 1997, 42: 3619-3627 [46] Yin H, Tang D, Mao X, Xiao W, Wang D. Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries[J]. Journal of Materials Chemistry A, 2015, 29: 15184-15189 [47] Jiao H D, Wang J X, Zhang L, Zhang K, Jiao S Q. Electrochemically depositing titanium(III) ions at liquid tin in a NaCl-KCl melt[J]. RSC Adv, 2015, 5: 62235-62240 [48] Poltorak L, Morakchi K, Herzog G,Walcarius A. Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica[J]. Electrochimica Acta, 2015, 179: 9-15 |
相关文章 0
No related articles found! |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3260