1. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 1001902. 中国科学院大学化学工程学院,北京 1000493. 犹他大学冶金工程系,美国 犹他州 84112
收稿日期:
2018-08-30修回日期:
2018-11-27出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
张盈基金资助:
国家自然科学基金项目Mini-review on the preparation of titanium metal by the thermochemical processes
Xiaofang ZHU1,2, Qing LI1, Ying ZHANG1*, Zhigang Zak FANG3, Shili ZHENG1, Pei SUN3, Yang XIA31. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China3. Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Received:
2018-08-30Revised:
2018-11-27Online:
2019-06-22Published:
2019-06-20摘要/Abstract
摘要: 金属钛及其合金性能优异,是重要的功能与结构材料。元素钛虽储量丰富,但极易与其它金属及氧氮氢碳等间隙元素反应,特别是与氧化学结合力强,使金属钛的提取非常困难。目前金属钛的主流生产方法是Kroll法,虽经多年优化且已高度成熟,但生产成本及能耗较高。为降低金属钛的生产成本,提出了诸多热化学与电化学新方法。本工作综述了近十余种不同热化学还原法,包括以TiCl4为前驱体的Kroll法、Hunter法、ADMA法、TiRO法、气相还原法、CSIR-Ti法、ITP-Armstrong法及ARC法和以TiO2为前驱体的预成型还原法(PRP)、熔盐辅助的液钙还原法、导电体介入还原法(EMR)、镁热还原?金属钙脱氧两步法及氢气协同镁热还原(HAMR)法,还有以钛酸盐为原料的氟钛酸盐热还原法。常用的还原剂主要是活泼金属单质及其合金,包括钙、镁、铝、钠。论述了这些方法的技术特点及研究现状。这些工艺大都处于实验室或中试研究阶段,其工业化潜力也不尽相同,最终在产品质量和经济成本上能否比Kroll法更具优越性尚需验证。
引用本文
朱小芳 李庆 张盈 房志刚 郑诗礼 孙沛 夏阳. 热化学还原法制备金属钛的技术研究进展[J]. 过程工程学报, 2019, 19(3): 456-464.
Xiaofang ZHU Qing LI Ying ZHANG Zhigang Zak FANG Shili ZHENG Pei SUN Yang XIA. Mini-review on the preparation of titanium metal by the thermochemical processes[J]. Chin. J. Process Eng., 2019, 19(3): 456-464.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218279
http://www.jproeng.com/CN/Y2019/V19/I3/456
参考文献
[1] Lütjering G , Williams J C. Titanium[M]. Springer Berlin Heidelberg, 2007. [2] Lu K. The future of metals[J]. Science, 2010. 328(5976): 319-320. [3] Reed T B. Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations[J]. Joural of the Electrochemical Society, 1971, 119(12). [4] Kroll W. The production of ductile titanium[J]. Tr.electrochem.soc, 1940, 78(1Pt1): L175. [5] Hunter M A. Metallic titanium[J]. J.am.chem.soc, 1910, 32(3):330-336. [6] Mo W. Titanium metallurgy. 1998: Metallurgical Industry Press. [7] Seetharaman S. Treatise on process metallurgy[M], Volume 3: Industrial Processes. Vol. 3. 2013: Newnes. [8] Kasparov S A, Klevtsov A G, Cheprasov A I, Moxson V S, Duz V A. Semi-continuous magnesium-hydrogen reduction process for manufacturing of hydrogenated, purified titanium powder: US 8007562 B2[P], 2011-08-30. [9] Doblin C, Chryss A, Monch A. Titanium powder from the TiROTM process[J]. Key Engineering Materials, 2012, 520: 95-100. [10] Hansen D A, Gerdemann S J. Producing titanium powder by continuous vapor-phase reduction[J]. JOM, 1998, 50(11): 56-58. [11] Vuuren D V, Oosthuizen S J, Heydenrych M D. Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products[J]. The journal of the southern african instiute of mining and metallurgy, 2011, 111: 141-148. [12] Crowley G. How to extract low-cost titanium: a new process for titanium extraction and production promises to cut costs and expand applications[J]. Advanced materials & processes, 2003, 161(11): 25-27. [13] Chen W, Yamamoto Y, Peter W H. Investigation of pressing and sintering processes of CP-Ti powder made by armstrong process[J]. Key Engineering Materials, 2010, 436: 123-130. [14] Gerdemann S J, Oden L L, White J C. Continuous production of titanium powder[J], in Proc. 1997 Materials Week 'Titanium extraction and processing', ed. by B. Mishra, G.J. Kipouros (TMS, Indianapolis, IN, 1997), pp. 49-54. [15] Bordbar H, Yousefi A A, Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores: a review. Polyolefins Journal, 2017. 4(2): 149-173. [16] Coughlin J P. Contributions to the data on theoretical metallurgy. XII. Heats and free energies of formation of inorganic oxides[J]. US Government Printing Office, 1954, 542. [17] Mah A D, et al. Thermodynamic properties of titanium-oxygen solutions and compounds. 1955, Bureau of Mines. [18] Okabe T H, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys & Compounds, 2004, 364(1): 156-163. [19] Suzuki R O, Inoue S. Calciothermic reduction of titanium oxide in molten CaCl2[J]. Metallurgical & Materials Transactions B, 2003, 34(3): 277-285. [20] Park I, Abiko T, Okabe T H. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR)[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2): 410-413. [21] Henrie T A, Henry D, Kleespies E K. Magnesium reduction of titanium oxides in a hydrogen atmosphere: US 3140170 A[P], 1964-07-07. [22] Nersisyan H H, Lee J H, Won C W. Combustion of TiO2-Mg and TiO2-Mg-C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders[J]. Materials Research Bulletin, 2003, 38(7): 1135-1146. [23] Eshed M, Irzh A, Gedanken A. Reduction of titanium dioxide to metallic titanium conducted under the autogenic pressure of the reactants[J]. Inorganic Chemistry, 2009, 48(15): 7066. [24] Won C W, Nersisyan H H, Won H I. Titanium powder prepared by a rapid exothermic reaction[J]. Chemical Engineering Journal, 2010, 157(1): 270-275. [25] Zhang Y, Fang Z Z, Xia Y, et al. A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag[J]. Chemical Engineering Journal, 2016, 286: 517-527. [26] Fisher R L. Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier: US 4923531[P], 1990- 05-08. [27] Suzuki R O, Saguchi A, Takahashi W, et al. Recycling and high performance waste processing. Recycling of rare earth magnet scraps: Part II. Oxygen removal by calcium[J]. Materials Transactions Jim, 2001, 42(12): 2492-2498. [28] Okabe T H, Oishi T, Ono K. Preparation and characterization of extra-low-oxygen titanium[J]. Journal of Alloys & Compounds, 1992, 184(1): 43–56. [29] Oh J M, Lee B K, Suh C Y, et al. Deoxidation of Ti powder and preparation of Ti ingot with low oxygen concentration[J]. Materials Transactions, 2012, 53(6): 1075-1077. [30] Xia Y, Fang Z Z, Sun P, et al. The effect of molten salt on oxygen removal from titanium and its alloys using calcium[J]. Journal of Materials Science, 2017, 52(7): 4120-4128. [31] Zhang Y, Fang Z Z, Sun P, et al. Thermodynamic destabilization of Ti-O Solid Solution by H2 and deoxygenation of Ti using Mg[J]. Journal of the American Chemical Society, 2016, 138(22): 6916-6919. [32] Xia Y, Fang Z Z, Zhang Y, et al. Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle size[J]. Materials Transactions, 2017, 58(3). [33] Zhang Y, Fang Z Z, Sun P, et al. Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt[J]. Chemical Engineering Journal, 2017, 327: 169-182. [34] Jonas K, New York, N. Y. Cyclic process for the manufacture of titanium-aluminum alloys and regeneration of intermediates thereof: US 8532555A[P], 1958-06-03. [35] 王武育, 氟盐铝热还原法制取海绵钛的研究[J]. 稀有金属, 1996(3):169-171. Wang W, Study on extraction of titanium sponge by thermal-reduction method of fluorine salts [J]. Rare metals, 1996(3):169-171. [36] 冯乃祥,赵坤,王耀武,等. 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法:WO 2017012185 A1[P].2017-01-26. Feng N, Zhao K, Wang Y, et al. Preparation of titanium or titanium alloy by thermal-reduction in two-stage aluminum :WO 2017012185 A1[P].2017-01-26 [37] Zhao K, Feng N, Wang Y. Fabrication of Ti-Al intermetallics by a two-stage aluminothermic reduction process using Na2TiF6[J]. Intermetallics, 2017, 85: 56-162. |
相关文章 15
[1] | 李伯森 张家赫 杨立鹏 李佳佳 邢春贤 张海涛. 基于离子凝胶电解质的TiO2(B)@C/CNT//AC准固态锂离子电容器[J]. 过程工程学报, 2021, 21(4): 479-487. |
[2] | 杨帆 温良英 赵岩 徐健 张生富 杨仲卿. TiO2(100)表面C和Cl2吸附反应的第一性原理计算[J]. 过程工程学报, 2020, 20(5): 569-575. |
[3] | 武文粉 李会泉 孟子衡 王晨晔 王兴瑞 赵晨. 碱溶法回收废SCR脱硝催化剂中的二氧化钛[J]. 过程工程学报, 2019, 19(S1): 72-80. |
[4] | 孙朝晖 李明 高官金 李良. 粗四氯化钛有机物精制除钒尾渣提钒技术[J]. 过程工程学报, 2019, 19(S1): 93-98. |
[5] | 谢桂香 魏基坚 胡志彪 郑瑞娟. ZnO/C/TiO2复合纳米材料制备及其光催化性能[J]. 过程工程学报, 2018, 18(5): 1068-1074. |
[6] | 于清跃 王监宗 于荟 武文良 朱新宝. ZrO2?TiO2复合催化剂的制备及其催化合成柠檬酸三丁酯[J]. 过程工程学报, 2016, 16(5): 876-881. |
[7] | 赵金花王宇松陈武华赖飞. 吗啉离子液体中纳米TiO2的制备及其光催化性能[J]. , 2015, 15(1): 159-163. |
[8] | 杨访宣绍峰马新胜. 纳米光催化网ACH/TiO2动态降解甲苯气体[J]. , 2015, 15(1): 164-168. |
[9] | 周华锋刘玉萍张丽清. 介孔二氧化钛负载硅钨杂多酸的制备及其催化性能[J]. , 2012, 12(3): 522-526. |
[10] | 郭凌坤吕珺周嵩汪冬梅徐光青郑治祥吴玉程. Ag@AgCl-TiO2-粉煤灰微珠复合光催化剂的制备及其可见光光催化性能[J]. , 2012, 12(1): 142-147. |
[11] | 石凤湘刘少友冯庆革. S与Cr共掺杂TiO2介孔材料的固相合成及其可见光降解中性红[J]. , 2011, 11(6): 1060-1067. |
[12] | 李晨邱克辉张佩聪曹磊. 混合酸浸法分离含钛高炉渣中的主要成分[J]. , 2011, 11(5): 772-776. |
[13] | 向炜成胡鹏张星姚明水徐瑞芬袁方利. 纳米多孔二氧化钛空心球的水热法制备及其对Cr(VI)的吸附特性[J]. , 2011, 11(4): 678-683. |
[14] | 蒋天智刘少友唐文华龙步明. N和Al共掺杂TiO2粉体的固相合成及可见光降解性能[J]. , 2011, 11(2): 336-342. |
[15] | 刘亮吕珺李云刘家琴吴玉程. 纳米TiO2/凹凸棒石光催化复合材料的制备及其动力学[J]. , 2011, 11(1): 117-123. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3285