1. 青海民族大学物理与电子信息工程学院,青海 西宁 8100072. 北京工业大学材料科学与工程学院,北京 100124
收稿日期:
2018-07-13修回日期:
2018-10-14出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
董虎林Research progress in doping of lithium vanadium phosphate cathode materials
Hulin DONG1, Haiping BAO1, Hao WANG2*, Jianhong PENG1*1. College of Physics and Electronic Information Engineering, Qinghai University of Nationalities, Xining, Qinghai 810007, China2. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Received:
2018-07-13Revised:
2018-10-14Online:
2019-06-22Published:
2019-06-20摘要/Abstract
摘要: 面对日趋严重的能源问题和环境问题,迫切需要寻找新的清洁能源以解决传统清洁能源(太阳能、潮汐能、风能等)转换效率低、能量储存难度大等问题。锂离子电池因绿色环保、安全性能好、放电容量高、循环寿命长、便于携带等优点受到研究者青睐,其中Li3V2(PO4)3 (LVP)锂离子电池因其较高的放电比容量和电压平台、良好的安全性能、便携性、环保型、低成本等优点成为备受关注的锂离子电池正极材料之一。由于LVP自身结构的缺陷,导致其离子导电率和电子导电率较低,不利于发挥其理论容量高、倍率性能优等特点。目前多数关于锂离子电池正极材料LVP的改性研究中,离子掺杂是最有效的方法之一。离子掺杂一方面可以优化材料的晶格参数,提高充放电过程中晶体结构的稳定性,改善其循环寿命;另一方面有助于增大晶格间隙,扩大离子的扩散通道,从而有利于提高离子扩散系数,改善电极材料的离子导电率。在目前的研究中,LVP的离子掺杂方法主要包括锂位掺杂、钒位掺杂、阴离子掺杂和多位掺杂四种,其中钒位掺杂包括钒位单掺杂和共掺杂。本工作阐述了近年来LVP离子掺杂改性的研究进展,并对该材料未来的发展趋势进行了展望。
引用本文
董虎林 包海萍 汪浩 彭建洪. 磷酸钒锂正极材料掺杂改性研究进展[J]. 过程工程学报, 2019, 19(3): 483-491.
Hulin DONG Haiping BAO Hao WANG Jianhong PENG. Research progress in doping of lithium vanadium phosphate cathode materials[J]. Chin. J. Process Eng., 2019, 19(3): 483-491.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218245
http://www.jproeng.com/CN/Y2019/V19/I3/483
参考文献
[1] Sato M, Tajimi S, Okawa H, et al.Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition Processes[J][J].Solid State Ionics, 2002, 152(0):247-251 [2]Cahill L S, Chapman R P, Britten J F, et al.Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3[J].Journal of Physical Chemistry C, 2006, 110(14):7171-7177 [3] Yasuhara S, Yasui S, Taniyama T, et al.High-Rate Performance of LiCoO2 Epitaxial Thin Films with Various Surface Conditions[J][J].MRS Advances, 2018, 3(22):1-5 [4]Lee D, Ahn S, Lee D, et al.Investigation of Laser Cutting Width of LiCoO2 Coated Aluminum for Lithium-Ion Batteries[J].Applied Sciences, 2017, 7(9):914-917 [5]Cheng Q, Yang T, Li Y, et al.Oxidation–reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes[J].Journal of Materials Chemistry A, 2016, 4(18):6902-6910 [6]Zeng X, Wu J, Hu Q.Effects of magnesium and chlorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials[J].Iet Micro & Nano Letters, 2016, 11(12):789-791 [7]Gotcu P, Seifert H J.Thermophysical properties of LiCoO2-LiMn2O4 blended electrode materials for Li-ion batteries[J].Physical Chemistry Chemical Physics, 2016, 18(15):10550-10562 [8] Vu A, Stein A,. Lithium iron phosphate spheres as cathode materials for high power lithium ion batteries[J].Journal of Power Sources, 2014, 245(0):48-58 [9] Wang J J, Yang J L, Tang Y J, et al.Size-dependent surface phase change of lithium iron phosphate during carbon coating[J]. [J].Nature Communications, 2014, 5(0):1-8 [10]Hameed A S, Reddy M V V, Chowdari B V R, et al.Preparation of RGO wrapped Magnetite Nanocomposites and its Energy storage properties[J].Rsc Advances, 2014, 4(109):64142-64150 [11]Sun C, Rajasekhara S, Dong Y, et al.Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3C-based composites for lithium-ion batteries[J].Acs Appl Mater Interfaces, 2011, 3(9):3772-3776 [12] Wang S L, Zhang Z X, Deb A, et al.Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries[J].[J].Electrochimica Acta, 2014, 143(0):297-304 [13] Xu J T, Chou S L, Zhou C F, et al.Three-dimensional-network Li3V2(PO4)3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes[J].[J].Journal of Power Sources, 2014, 246(0):124-131 [14]Lim C H, Jung Y H, Su J Y, et al.Encapsulation of Lithium Vanadium Phosphate in Reduced Graphene Oxide for a Lithium-ion Battery Cathode with Stable Elevated Temperature Performance[J].Electrochimica Acta, 2017, 253(1):208-217 [15] Xia Y, Shi S, Li C G, et al.Electrochemical properties of Sn-doped Li3V2(PO4)3 cathode material synthesized via a citric acid assisted sol–gel method[J]. [J].Journal of Alloys and Compounds, 2015,, 652(0):298-306 [16]Li Y J, Cao M L, Zhou C X, et al.A novel synthesis of gadolinium-doped Li3V2(PO4)3C with excellent rate capacity and cyclability[J].RSC Adv, 2016, 6(34):28624-28632 [17]Ren M M, Zhou Z, Li Y Z, et al.Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries[J].Journal of Power Sources, 2006, 162(2):1357-1362 [18] Chen Q Q, Qiao X C, Wang Y B, et al.Electrochemical performance of Li3?xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries[J]. [J].Journal of Power Sources, 2012,, 201:(0):267-273 [19] 李玲芳, 韩绍昌, 范长岭, 等.以溶液法制备的钠掺杂锂离子电池正极材料Li3-xNaxV2(PO4)3/C[J]. [J].化工进展, 2018, 2018(1):201-205 [20] Mao J L, Shao L Y, Li P, et al.Comparison of phase composition, morphology and electrochemical property for Li3?xNaxV2(PO4)3 (x=0.5, 1.5 and 2.0) as lithium storage cathode materials[J][J].Electrochimica Acta, 2015, 173(0): 96-104 [21]Yin W M, Zhang T T, Zhu Q, et al.Synthesis and electrochemical performance of Li3–2xMgxV2(PO4)3C composite cathode materials for lithium-ion batteries[J].Transactions of Nonferrous Metals Society of China, 2015, 25(6):1978-1985 [22]Zhang Y, Nie P, Shen L, et al.ChemInform Abstract: Rhombohedral NASICON‐Structured Li2NaV2(PO4)3 with Single Voltage Plateau for Superior Lithium Storage[J].Rsc Advances, 2014, 45(29):8627-8631 [23] Mateyshina Y G, Uvarov N F, .Electrochemical behavior of Li3?xM' xV2?yM' ' y(PO4)3 (M' =K, M' ' =Sc, Mg+Ti)/C composite cathode material for lithium-ion batteries[J][J].Journal of Power Sources, 2011, 196(3):1494-1497 [24]Kuang Q, Zhao Y M, Liang Z Y, et al.Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries[J].Journal of Power Sources, 2011, 196(23):10169-10175 [25]Stankov S M, Abrahams I, Momchilov A, et al.Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate[J].Ionics, 2015, 21(6):1501-1508 [26]Chen Z Y, Yuan G H, Dai C S, et al.Electrochemical behavior of Mg-doped 7LiFePO4–Li3V2(PO4)3 composite cathode material for lithium-ion batteries[J].Ionics, 2013, 19(8):1077-1084 [27]Huang J S, Yang L, Liu K Y, et al.Synthesis and characterization of Li3V(2?2x3)Mgx(PO4)3C cathode material for lithium-ion batteries[J].Journal of Power Sources, 2010, 195(15):5013-5018 [28]Naoi K, Kisu K, OKITA N, et al.Cathode Properties of Nanocrystalline Li3V18Al0.2(PO4)3 Multi-Walled Carbon Nanotube Composites for Hybrid Capacitor Prepared via Ultra-Centrifugation Treatment[J].Electrochemistry, 2015, 83(4):249-255 [29]Ai D J, Liu K Y, Li Z G, et al.Aluminothermal synthesis and characterization of Li3V2?xAlx(PO4)3 cathode materials for lithium ion batteries[J].Electrochimica Acta, 2011, 56(7):2823-2827 [30]Nathiya K,Bhuvanseswari D, Ganglibabu, et al.Li3MxV2?x(PO4)3C (M=Fe,Co) composite cathodes with extended solubility limit and improved electrochemical behavior[J].RSC Advances, 2012, 2(17):6885-6889 [31] Bai G L, Yang, Y F, Shao H X, et al.Synthesis and electrochemical properties of polyhedron-shaped Li3V2?xSnx(PO4)3 as cathode material for lithium-ion batteries[J].[J].Journal of Electroanalytical Chemistry,, 2013,, 688(0): 98-102 [32] Liu H P, Bi S F, Wen G W, et al.Synthesis and electrochemical performance of Sn-doped Li3V2(PO4)3/C cathode material for lithium ion battery by microwave solid-state technique[J]. [J].Journal of Alloys and Compounds, 2012, 543(0): 99-104 [33] Dang J X, Xiang F, Gu N Y, et al.Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries[J].[J].Journal of Power Sources, 2013, 243(0):33-39 [34] Chen R, Zhang H, Li Y, et al.Gadolinium/chloride co-doping of lithium vanadium phosphate cathodes for lithium-ion batteries[J]. [J].Solid State Ionics, 2017, 304(0):65-70 [35]Xu J, Chen G, Zhang H J, et al.Electrochemical performance of Zr-doped Li3V2(PO4)3C composite cathode materials for lithium ion batteries[J].Journal of Applied Electrochemistry, 2014, 45(2):123-130 [36] Liu L Y, Qiu Y B, Mai Y Z, et al.Influences of neodymium doping on magnetic and electrochemical properties of Li3V2(PO4)3/C synthesized via a sol–gel method [J].[J].Journal of Power Sources, 2015, 295(0):246-253 [37]Wang S L, Zhang Z X, Deb A, et al.Synthesis Characterization and Electrochemical Performance of Ce-Doped Ordered Macroporous Li3V2(PO4)3C Cathode Materials for Lithium Ion Batteries[J].Industrial & Engineering Chemistry Research, 2014, 53(50):19525-19532 [38]Xia Y, Zhang W K, Huang H, et al.Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3C cathode materials for lithium-ion batteries[J].Materials Science and Engineering B, 2011, 176(8):633-639 [39]Jiang B Q, Hu S F, Wang M W, et al.Synthesis and electrochemical performance of La-doped Li3V2?x Lax (PO4)3 cathode materials for lithium batteries[J].Rare Metals, 2011, 30(2):115-119 [40]Yang Z Y, Hu J H, Chen Z Y, et al.Sol–gel-assisted,fast and low-temperature synthesis of La-doped Li3V2(PO4)3C cathode materials for lithium-ion batteries[J].RSC Adv, 2015, 5(23):17924-17930 [41] Cui K, Hu S C, Li, Y K, et al.Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries[J].[J].Electrochimica Acta, 2016, 210(0):45-52 [42] Zhang S, Wu Q, Deng C, et al.Synthesis and characterization of Ti–Mn and Ti–Fe codoped Li3V2(PO4)3 as cathode material for lithium ion batteries[J].[J].Journal of Power Sources, 2012, 218(0):56-64 [43] Deng C, Zhang S, Yang S Y, et al, .Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J][J].The Journal of Physical Chemistry C, 2011, 115(30):15048-15056 [44] 张天睿, 罗明标, 黄阳辉, 等.镁铝联合掺杂对Li3V2(PO4)3电化学性能的影响研究[J][J].化工新型材料, 2018, 2018(1):121-124 [45] Yan J, Yuan W, Tang Z Y, et al.Synthesis and electrochemical performance of Li3V2(PO4)3?xClx/C cathode materials for lithium-ion batteries[J].[J].Journal of Power Sources, 2012, 209(0):251-256 [46]Yao J H, Jia Z T, Zhang P J, et al.Microwave assisted sol–gel synthesis of chlorine doped lithium vanadium phosphate[J].Ceramics International, 2013, 39(2):2165-2170 [47]Zhong K S, Liu L T, Liu J Q, et al.High-rate characteristic of F-substitution cathode materials for Li–ion batteries[J].Solid State Communications, 2009, 149(39-40):1679-1683 [48] 张钰.锂离子电池正极材料Li3V2(PO4)3的制备及其改性研究[D]. 新疆师范大学, 2016. [49]孙孝飞, 徐友龙, 郑晓玉等.三元掺杂改性锂离子电池正极材料[J].物理化学学报, 2015, 31(8):1513-1520 [50] Son J N, Kim S H, Kim M C, et al.Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+ and Cl? substitutions[J]. [J].Electrochimica Acta,, 2013, 97(0):210-215 |
相关文章 15
[1] | 崔冰 陈继 杨在志 赵伟雨 邓玉军 郁倩 刘娟 徐东. (Ca, Ta)共掺杂TiO2陶瓷巨介电性能及机理[J]. 过程工程学报, 2021, 21(2): 210-218. |
[2] | 张贺杰 陈兴 邹兴 刘文科 郑诗礼 张懿 李平. 废旧锂离子电池正极材料除铝技术研究进展[J]. 过程工程学报, 2020, 20(5): 503-509. |
[3] | 范俊梅 刘丹 王显光 石秉忠 袁方利. 掺锰超轻支撑剂的制备及性能研究[J]. 过程工程学报, 2020, 20(11): 1336-1343. |
[4] | 徐平 陈钦 张西华 曹宏斌 王景伟 张懿 孙峙. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864. |
[5] | 刘鲁静 贾志军 郭强 王毅 齐涛. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909. |
[6] | 毛绍宝 杨英 李海庆 张世宏. MoSi2和(Mo,W)Si2涂层的宽温域氧化过程[J]. 过程工程学报, 2019, 19(4): 826-835. |
[7] | 邢献军 刘建华 王文泉 陈泽宇 付一轩. 磷掺杂葵花盘基活性炭在锂离子电池负极材料中的应用[J]. 过程工程学报, 2019, 19(2): 434-439. |
[8] | 张浩 徐远迪 刘秀玉. 优化制备粒度均匀分布的Ce-Cu/TiO2空心微球及其光–湿性能[J]. 过程工程学报, 2019, 19(1): 195-201. |
[9] | 赵永锋 张海涛. 高纯六氟磷酸锂晶体产业化制备工艺研究进展[J]. 过程工程学报, 2018, 18(6): 1160-1166. |
[10] | 凡俊田 董陶 张兰 陈仕谋. 锂离子电池高压电解液研究进展[J]. 过程工程学报, 2018, 18(6): 1167-1177. |
[11] | 刘悦 曹磊 李达 曹坤 隋富生 赵伟 吕伟 齐涛. 混合表面活性剂体系合成锆掺杂介孔分子筛[J]. 过程工程学报, 2018, 18(5): 1082-1087. |
[12] | 孙李琪 严小敏 唐婉 何雨石 马紫峰 廖小珍. 普鲁士蓝钠离子电池正极材料高收率合成过程及性能[J]. 过程工程学报, 2018, 18(4): 809-814. |
[13] | 田志茗 王鑫月. La掺杂ZnO的制备及其光催化降解孔雀石绿[J]. 过程工程学报, 2018, 18(4): 828-833. |
[14] | 张亮 张兰 陈仕谋 王轶博 吕兴梅. 含LiDFOB的FEC/PC/DMC基电解液的高电压电化学性能[J]. 过程工程学报, 2018, 18(3): 605-611. |
[15] | 郑双双 刘艳侠 马立彬. 高能量密度锂离子电池LiNi0.8Co0.15Al0.05O2正极材料改性的研究进展[J]. 过程工程学报, 2018, 18(2): 225-231. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3288