1. 湘潭大学机械工程学院,湖南 湘潭 4110052. 楚天科技股份有限公司,湖南 长沙 410600
收稿日期:
2018-04-04修回日期:
2018-06-29出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
张振康基金资助:
国家自然科学基金项目;湖南省自然科学基金Numerical simulation and range analysis of off-design performance for a radial-inflow turbine
Zhenkang ZHANG1, Fanyun ZENG2, Zhiqi WANG1*, Xiaoxia XIA1, Ni HE1, Yanhua HU1, Jianping ZHANG11. Institute of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411005, China2. Truking Technology Limited, Changsha, Hunan 410600, China
Received:
2018-04-04Revised:
2018-06-29Online:
2019-04-22Published:
2019-04-18摘要/Abstract
摘要: 以R245fa为工质设计向心透平,采用CFD方法对向心透平性能进行全流域三维模拟研究,考察了入口温度、转子转速和膨胀比(进出口压力比)对向心透平工况特性的影响,对主要影响因素进行极差分析。结果表明,向心透平工作转速为设计转速的80%~100%时,输出功率和等熵效率波动较小,工作转速高于设计值时透平性能迅速下降。随入口温度升高,透平输出功率与等熵效率增大;随膨胀比增大,透平输出功率线性增加。透平存在最佳膨胀比使等熵效率最大,且实际运行压比大于最佳膨胀比时,透平等熵效率变化较小。出口压力对向心透平输出功率影响最大,温度的影响最小;转子转速对等熵效率影响最大,入口压力的影响最小。
引用本文
王志奇 曾凡云 张振康 夏小霞 贺妮 胡艳华 张建平. 有机工质向心透平变工况特性的数值模拟与极差分析[J]. 过程工程学报, 2019, 19(2): 246-253.
Zhenkang ZHANG Fanyun ZENG Zhiqi WANG Xiaoxia XIA Ni HE Yanhua HU Jianping ZHANG. Numerical simulation and range analysis of off-design performance for a radial-inflow turbine[J]. Chin. J. Process Eng., 2019, 19(2): 246-253.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218179
http://www.jproeng.com/CN/Y2019/V19/I2/246
参考文献
[1]Bao J, Zhao L.A review of working fluid and expander selections for organic Rankine cycle[J].Renewable and Sustainable Energy Reviews, 2013, 24(10):325-342 [2]李燕生, 陆桂林.向心透平与离心压气机[M].北京:机械工程出版社.1987. [3].LI Y S, LU G L.Radial inflow turbine and centrifugal compressor[M].Beijing China Machine Press,1987. [4]Quoilin S, Lemort V.Technological and economical survey of organic Rankine cycle systems. In: 5th European conference economics and management of energy in industry; 2009.[J].In: 5th European conference economics and management of energy in industry, 2009, :- [5]王智, 吴伟铭, 韩中合.基于向心透平热力设计优化的有机朗肯循环工质选择[J].太阳能学报, 2015, 36(09):2225-2230 [6]WANG Z,WU W M,HAN Z H.Selection of working fluids for organic rankine cycle based on optimal thermal design for radial turbine[J].Acta Energial Solaris Sinica, 2015, 36(09):2225-2230 [7]Rahbar K, Mahmoud S, Al-Dadah RK, et a. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine[J].Energy Conversion and Management, 2015, 91(2):186-198 [8]Sauret E, Rowlands A S.Candidate radial-inflow turbines and high-density working fluids for geothermal power systems[J]. Energy, 2011(36):4460?4467.[J].Energy, 2011, 36(7):4460-4467 [9]马新灵, 孟祥睿, 魏新利, 等.有机朗肯循环低品位热能发电系统向心透平的设计与性能研究[J].中国电机工程学报, 2014, 34(14):2289-2296 [10]MA X L, MENG X R, WEI X L, et al.Design and Performance Study of Radial Inflow Turbine Used on Organic Rankine Cycle Waste Heat Power Generation System[J].Proceedings of the CSEE, 2014, 34(14):2289-2296 [11]Kang S H.Design and experimental study of ORC (organic Rankine cycle) and radial turbineusing R245fa working fluid [J].Energy, 2012(41):514?524.[J].Energy, 2012, 41(1):514-524 [12]Shao L, Zhu J, Meng X, et al.Experimental study of an organic Rankine cycle system with radial inflow turbine and R123[J].Applied Thermal Engineering,2017, 124:940?947.[J].Applied Thermal Engineering, 2017, 124(6):940-947 [13]李艳,顾春伟.高膨胀比有机工质向心透平气动优化研究[J].工程热物理学报, 2013, 34(7):1239-1242 [14]LI Y,GU C W.Aerodynamic optimization study for a radial-inflow organic turbine with high expansion ratio[J].Journal of Engineering Thermophysics, 2013, 34(7):1239-1242 [15]邓清华,牛久芳,丰镇平.叶轮顶部间隙对向心透平总体性能影响的研究[J].工程热物理学报, 2006, 27(3):408-410 [16]DENG Q H, NIU J F, FENG Z P.Effects of rotor blade tip clearance on total aerodynamic performance in a radial inflow turbine[J].Journal of Engineering Thermophysics, 2006, 27(3):408-410 [17]Sauret E, Gu Y.Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine [J]. Applied Energy, 2014, 135:202?211.[J].Applied Energy, 2014, 135(16):202-211 [18]Zheng Y, Hu D S, Cao Y, et al.Preliminary design and off-design performance analysis of an Organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method[J].Applied Thermal Engineering,2017, 112:25?37.[J].Applied Thermal Engineering, 2017, 112(5):25-37 [19]Kim D Y, Kim Y T.Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion[J].Renewable Energy,2017, 106:255?263.[J].Renewable Energy, 2017, 106(7):255-263 [20]Ayad M.Al Jubori, Raya Al-Dadah, et al. Performance enhancement of a small-scale organic Rankine cycleradial-inflow turbine through multi-objective optimization algorithm[J].Energy,2017, 131:297?311.[J].Energy, 2017, 131(5):297-311 [21]Nithesh K G, Chatterjee D, Cheol O H, et al.Design and performance analysis of radial-inflow turbo expander for OTEC application[J].Renewable Energy,2016, 85:834?843.[J].Renewable Energy, 2015, 85(7):834-843 [22]Nithesh K G, Chatterjee D .Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system[J].Applied Energy, 2016, 167:1?16.[J].Applied Energy, 2016, 167(4):1-16 |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[12] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[13] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
[14] | 卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438. |
[15] | 南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3234