1. 合肥工业大学机械工程学院,安徽 合肥 230009 2. 合肥工业大学汽车与交通工程学院,安徽 合肥 230009
收稿日期:
2018-04-19修回日期:
2018-06-02出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
马培勇基金资助:
安徽省重大专项项目Optimization of activated carbon preparation from sawdust and plastics using response surface method
Peiyong MA1*, Tian WANG1, Jinzhou WU1, Xianjun XING1, Xianwen ZHANG21. School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China2. School of Automobile and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
Received:
2018-04-19Revised:
2018-06-02Online:
2019-04-22Published:
2019-04-18Contact:
Peiyong Ma 摘要/Abstract
摘要: 将梧桐锯末和聚丙烯塑料按比例混合后,采用K2CO3活化法制备活性炭,基于中心组合实验设计(CCD)的响应面法(RSM),以碘吸附值和亚甲基蓝吸附值为优化目标,优化工艺参数。结果表明,当塑料含量为19wt%、无水K2CO3与梧桐锯末质量比为1.73、活化温度为958℃、活化时间为91 min时,所制活性炭的性能最优,碘吸附容量为1320.97 mg/g,亚甲基蓝的吸附容量为471.95 mg/g,与二阶模型预测值接近,表明该模型具有较高的可信度。方差分析结果表明,盐料比、活化温度、活化时间提高对活性炭的碘吸附容量有显著的促进作用,而塑料含量对活性炭碘吸附容量有抑制作用;活化温度、活化时间对活性炭的亚甲基蓝吸附容量影响显著,与塑料含量均具有促进作用,而盐料比是非显著因素且有抑制作用。最优条件下所制活性炭的比表面积为1916.10 m2/g,总孔容为1.12 cm3/g,其中介孔高达70.10%。相比于单因素优化实验所制活性炭,比表面积提高了454.11 m2/g。FT-IR分析表明两种优化条件下所制活性炭的官能团基本没有变化,活性炭亚甲基蓝吸附量的提高主要是由于样品的比表面积增大。
引用本文
马培勇 王田 武晋州 邢献军 张贤文. 响应面法优化制备塑料-锯末活性炭[J]. 过程工程学报, 2019, 19(2): 377-386.
Peiyong MA Tian WANG Jinzhou WU Xianjun XING Xianwen ZHANG. Optimization of activated carbon preparation from sawdust and plastics using response surface method[J]. Chin. J. Process Eng., 2019, 19(2): 377-386.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218186
http://www.jproeng.com/CN/Y2019/V19/I2/377
参考文献
[1] Sircar S, Golden T C, Rao M B. Activated carbon for gas separation and storage [J]. Carbon, 1996, 34(1):1-12. [2] MustafaSoylak, LatifElci, MehmetDogan. A Sorbent Extraction Procedure for the Preconcentration of Gold, Silver and Palladium on an Activated Carbon Column[J]. Analytical Letters, 2000, 33(3):513-525. [3] Marsh H. Introduction to carbon science[J]. Stoneham, MA (USA); Butterworth Publishers, 1989. [4] Jia Z, Xu J, Xu J, et al. Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support [J]. Chemical Engineering Journal, 2015, 262:1152-1160. [5] Watanabe H, Asano S, Fujita S, et al. Nitrogen-Doped, Metal-Free Activated Carbon Catalysts for Aerobic Oxidation of Alcohols [J]. Acs Catalysis, 2015, 5(5):2886-2894. [6] Shin H D, Agostini M, Belharouak I, et al. High-power lithium polysulfide-carbon battery [J]. Carbon, 2016, 96:125-130. [7] Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. Acs Nano, 2015, 9(3):2556. [8] Hameed B H, Tan I A W, Ahmad A L. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.[J].Journal of Hazardous Materials , 2008 , 158(2–3):324-332. [9] 陈文婷, 冉启成, 蔡献宗,等. K2CO3活化空心莲子草制备活性炭及表征[J]. 化工学报, 2016, 67(s1):353-358. Chen W, Ran Q, Cai X, et al. Preparation and characterization of activated carbon from Alternanthera philoxeroides by K_2CO_3 activation[J]. Ciesc Journal, 2016, 67(s1):353-358. [10] 谢新苹, 孟中磊, 蒋剑春,等. 磷酸活化桉木屑制备活性炭的影响因素及表征[J]. 东北林业大学学报, 2013, 41(4):116-119. Xie X, Meng Z, Jiang J, et al. Preparation and Characterization of Activated Carbon from Eucalyptus Sawdust with Phosphoric Acid[J]. Journal of Northeast Forestry University, 2013, 41(4):116-119. [11] 刘肖强, 李奕怀, 张素娜,等. 酚醛树脂制备活性炭的工艺[J]. 上海第二工业大学学报, 2016, 33(2):107-111. [12] 马培勇, 武晋州, 张贤文,等. 聚丙烯塑料-锯末干混合制备高介孔率柱状活性炭[J]. 环境科学学报, 2018(2). Peiyong M A, Jinzhou W U, Zhang X, et al. Preparation of high mesoporous granular activated carbon with polypropylene and sawdust via dry mix method[J]. Acta Scientiae Circumstantiae, 2018(2).. [13] S. Y. Chen, P. L. Lin. Optimization of operating parameters for the metal bioleaching process of contaminated soil [J]. Separation and Purification Technology, 2010, 71(2): 178-185. [14] Musia, E. Cibis, W. Rymowicz. Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus niger cultivated on biodiesel-derived waste composed of glycerol and fatty acids [J]. Applied Clay Science, 2011, 52(3): 277-284 [15] Saeed M O, Azizli K, Isa M H, et al. Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process[J]. Journal of Water Process Engineering, 2014, 8(2):e7-e16. [16] Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology[J]. Food Chemistry, 2005, 93(1):47-56. [17] Quanhong L, Caili F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein.[J]. Food Chemistry, 2005, 92(4):701-706. [18] Z. A. Ghani, M. A. M. Ishak, K. Ismail. Direct liquefaction of Mukah Balingian low-rank Malaysian coal: optimization using response surface methodology [J]. Asia-Pacific J. Chem. Eng., 2010, 6(4): 581-588. [19] M. A. Jamaluddin, K. Ismail, M. A. Mohd Ishak, Z. Ab Ghani, M. F. Abdullah, M. T. Safian, et al. Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM) [J]. Renewable Energy, 2013, 55(4): 357-365. [20] N. B. Azmi, M. J. K. Bashir, S. Sethupathi. L. J. Wei, N. C. Aun. Stabilized landfill leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD and NH3-N – Optimization of preparation conditions by RSM [J]. J. Environ. Chem. Eng., 2014, 3(4): 1287-1294. [21] Shieh C J, Liao H F, Lee C C. Optimization of lipase-catalyzed biodiesel by response surface methodology[J]. Bioresource Technology, 2003, 88(2):103-106. [22] 刘义彬,马晓波,陈德珍,等. 废塑料典型组分共热解特性及动力学分析[J].中国电机工程学报, 2010,30(23):56-61, Liu Y B, Ma X B, Chen D Z, et al. Copyrolysis characteristics and kinetic analysis of typical constituents of plastic wastes[J]. Proceedings of the Csee, 2010, 30(23):56-61. [23] 黄学敏, 苏欣, 杨全. 污泥活性炭固定床吸附甲苯[J]. 环境工程学报,2013,7(3):1085-1090. Huang X. Adsorption of toluene by fixed sludge-based activated carbon bed[J]. Chinese Journal of Environmental Engineering, 2013, 7(3):1085-1090. [24] Osório N M, Ferreira-Dias S, Gusm?o J H, et al. Response surface modelling of the production of ω-3 polyunsaturated fatty acids-enriched fats by a commercial immobilized lipase[J]. Journal of Molecular Catalysis B Enzymatic, 2001, 11(4–6):677-686. [25] Ghani Z A, Yusoff M S, Zaman N Q, et al. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate.[J]. Waste Management, 2017, 62:177-187. [26] Junior O P, Cazetta A L, Gomes R C, et al. Synthesis of ZnCl 2 -activated carbon from macadamia nut endocarp ( Macadamia integrifolia ) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption[J]. Journal of Analytical & Applied Pyrolysis, 2014, 105(5):166-176. [27] Bedin K C, Martins A C, Cazetta A L, et al. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chemical Engineering Journal, 2016, 286: 476-484. [28] 金彦任,黄振兴. 吸附与孔径分布[M]. 北京:国防工业出版社, 2015, 87-91 [29] Zuo S, Yang J, Liu J, et al. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material[J]. Fuel Processing Technology, 2009, 90(7–8):994-1001 |
相关文章 15
[1] | 文康 韦祎 马光辉. 基于响应面法对制备高包埋率ROP-PLGA微球的影响因素分析[J]. 过程工程学报, 2021, 21(1): 83-91. |
[2] | 马雅倩 孔艳丽 丁磊 陈忠林 沈吉敏. 改性沸石耦合活性炭强化混凝处理微污染源水[J]. 过程工程学报, 2020, 20(7): 860-869. |
[3] | 杨茂林 李田 黄能 赵培涛 郭庆杰. 含PVC混合塑料水热反应中的氯迁移特性[J]. 过程工程学报, 2020, 20(4): 467-475. |
[4] | 沈文豪 张亚新 宋江. 基于CFD-DEM方法的净化器流场模拟与结构优化[J]. 过程工程学报, 2020, 20(10): 1147-1155. |
[5] | 胡胜杰 黄永东 赵岚 朱凯 苗壮 王飞 晋洪超 李建 杨珺 汪和睦 马光辉 袁洪水. 基于疫苗颗粒完整性的硅胶吸附/解吸附纯化重组乙肝表面抗原 工艺研究[J]. 过程工程学报, 2020, 20(10): 1198-1209. |
[6] | 张浩 徐远迪 张磊 刘秀玉. 钢渣改性活性炭的制备及其降解甲醛性能[J]. 过程工程学报, 2019, 19(6): 1228-1233. |
[7] | 刘剑 黄莉 彭钢 易正戟. 颗粒活性炭载纳米零价铁去除水中的Cr(VI)[J]. 过程工程学报, 2019, 19(4): 714-720. |
[8] | 杨小白 韩云龙 李迎根 张浩 钱付平 胡永梅. 活性炭混合钢渣烧结烟气脱硫脱硝实验研究[J]. 过程工程学报, 2019, 19(2): 440-446. |
[9] | 周日峰 石基弘 刘全祯 牟善军 姜春明 巩亮. 活性炭吸附甲烷和甲苯的分子模拟研究[J]. 过程工程学报, 2018, 18(S1): 97-102. |
[10] | 钟倩倩 赵雅琴 吴爱兵 王磊 沈丽 王鹏. 微波活化稻壳基生物质材料对亚甲基蓝的吸附性能[J]. 过程工程学报, 2018, 18(6): 1210-1218. |
[11] | 常远 郑家乐 都林 李松庚 宋文立. 流化床用树脂基球形活性炭及其VOCs吸附性能[J]. 过程工程学报, 2018, 18(5): 1112-1118. |
[12] | 马巍威 吴小林 姬忠礼. 基于响应面法的折流板除雾器分离性能优化[J]. 过程工程学报, 2018, 18(4): 689-696. |
[13] | 吴东强 马培勇 胡淞 邢献军 张贤文. 污泥-锯末混合ZnCl2活化制备活性炭[J]. 过程工程学报, 2018, 18(4): 792-798. |
[14] | 刘再亮 孟海玲 周科 刘庭蕾 洪露. 微波-载铜活性炭催化氧化降解腐殖酸[J]. 过程工程学报, 2018, 18(4): 886-892. |
[15] | 刘剑 汪燕香 彭钢 张会平. Fe-5A催化亚甲基蓝溶液湿式H2O2氧化[J]. 过程工程学报, 2018, 18(3): 646-651. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3243