1. 西北大学化工学院,陕西 西安 7100692. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 100190
收稿日期:
2018-02-19修回日期:
2018-04-11出版日期:
2018-12-22发布日期:
2018-12-19通讯作者:
刘庆芬基金资助:
水体污染控制与治理科技重大专项;国家自然科学基金资助项目;中国科学院重点部署项目Recovery of cephalexin with complexation
Xin WANG1, Zhengsheng MA1, Qingfen LIU2*1. School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China; 2. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-02-19Revised:
2018-04-11Online:
2018-12-22Published:
2018-12-19Contact:
Qing-Fen LIU Supported by:
Major Science and Technology Project of Water Pollution Control and Management in China摘要/Abstract
摘要: 以苯系和萘系化合物为络合剂,研究头孢氨苄结晶母液中头孢氨苄的富集回收过程,考察了络合剂种类、剂量、pH、温度、残留原料和副产物浓度对头孢氨苄络合过程的影响,确定了关键影响因素,建立和优化了工艺过程. 结果表明,络合剂种类、剂量和pH是影响头孢氨苄络合率的关键因素,其它因素对头孢氨苄络合率无明显影响. 最佳络合工艺为1-萘酚剂量4.4 g/L,pH为4.72,温度293 K,此时头孢氨苄的络合率大于97.0%,比目前生产工艺提高了5.0%.
引用本文
王新 马政生 刘庆芬. 头孢氨苄络合回收工艺[J]. 过程工程学报, 2018, 18(6): 1232-1238.
Xin WANG Zhengsheng MA Qingfen LIU. Recovery of cephalexin with complexation[J]. Chin. J. Process Eng., 2018, 18(6): 1232-1238.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218132
http://www.jproeng.com/CN/Y2018/V18/I6/1232
参考文献
[1]Hezave A Z, Esmaeilzadeh F.Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles[J].J. Aerosol Sci., 2010, 41(12):1090-1102 [2] Wu H, Feng Q, Yang H, et al.Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms[J].Colloids and Surfaces A: Physicochem. Eng. Aspects, 2017, 517:63-71 [3]A. Basso, P. Spizzo, M. Toniutti, et al.Kinetically controlled synthesis of ampicillin and cephalexin in highly condensed systems in the absence of a liquid aqueous phase[J].J. Mol. Catal. B: Enzym., 2006, 39(1-4):105-111 [4]Zhang Q Q, Ying G G, Pan C G, et al.Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis,Multimedia Modeling,and Linkage to Bacterial Resistance[J].Environ. Sci. Technol., 2015, 49(11):6772-6782 [5] Bruggink A, Roy P D.Industrial Synthesis of Semi-synthetic Antibiotics: In Synthesis of β-Lactam Antibiotics [M]. The Netherlands: Kluwer Academic Publishers, 2001: 13-54. [6]Maladkar N K.Enzymatic production of cephalexin[J].Enzyme Microb. Technol., 1994, 16(8):715-718 [7]Illanes A, Anjar?? M S, Altamirano C, et al.Optimization of cephalexin synthesis with immobilized penicillin acylase in ethylene glycol medium at low temperatures[J].J. Mol. Catal. B: Enzym., 2004, 30(2):95-103 [8] Al-Gheethi A A, Efaq A N, Mohamed R M, et al.Potential of bacterial consortium for removal of cephalexin from aqueous solution [J].J. Assoc. Arab. Univ. Basic Appl. Sci., 2017, 24:141-148 [9] Miao M S, Liu Q, Shu L, et al.Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses [J].Process Saf. Environ. Prot., 2016, 104:481-489 [10]Kemperman G J, de Gelder R, Dommerholt F J, et al.Clathrate-Type Complexation of Cephalosporins with β-Naphthol[J].Chem. Eur. J., 1999, 5(7):2163-2168 [11]Dutta N N, Saikia M D.Adsorption equilibrium of 7-aminodeacetoxy cephalosporanic acid-cephalexin mixture onto activated carbon and polymeric resins[J].Indian J. Chem. Technol., 2005, 12(3):296-303 [12]Shahriari S, Doozandeh S G, Pazuki G.Partitioning of Cephalexin in Aqueous Two-Phase Systems Containing Poly(ethylene glycol) and Sodium Citrate Salt at Different Temperatures[J].J. Chem. Eng. Data, 2012, 57(2):256-262 [13]Vilt M E, Winston Ho W S.Selective Separation of Cephalexin from Multiple Component Mixtures[J].Ind. Eng. Chem. Res., 2010, 49(23):12022-12030 [14]Wang K Y, Chung T S.Polybenzimidazole nanofiltration hollow fiber for cephalexin separation[J].AIChE J., 2010, 52(4):1363-1377 [15] Nami N, Hoseyni S A, Sadatshahabi M, et al.Protection of Environment by Extraction of β-Naphthol from Cephalexin Exit Unit of Antibiotic Manufacture[J].Biomed. Biotechnol., 2012, 41:108-111 [16]Li D C, Zhang Y W, Cheng S W, et al.Enhanced enzymatic production of Cephalexin at high substrate concentration in situ product removal by complexation[J].Food Technol. Biotechnol., 2008, 46(4):461-466 [17]Kemperman G J, de Gelder R, Dommerholt F J, et al.Induced fit phenomena in clathrate structures of cephalosporins[J].J. Chem. Soc., Perkin Trans., 2000, 7(7):1425-1429 [18]Kemperman G J, de Gelder R, Dommerholt F J, et al.Efficiency of cephalosporin complexation with aromatic compounds[J].J. Chem. Soc., Perkin Trans., 2001, 4(4):633-638 [19]Schro?n C G P H, Nierstrasz V A, Bosma R, et al.In situ product removal during enzymatic cephalexin synthesis by complexation[J].Enzyme Microb. Technol., 2002, 31(2):264-273 [20]Kemperman G J, de Gelder R, Dommerholt F J, et al.Cavities,Layers,and Channels in the Hosting Framework of Molecular Complexes Derived From Cephradine[J].Eur. J. Org. Chem., 2001, 2001(19):3641-3650 [21] Faarup P, Denmark F.Method of preparing a sparingly soluble complex of cephalexin: 4, 003, 896 [P]. 1977-01-18. [22]Hatanaka T, Morigaki S, Aiba T, et al.Effect of pH on the skin permeability of a zwitterionic drug,cephalexin[J].Int. J. Pharm., 1995, 125(2):195-203 [23]Wang K Y, Xiao Y C, Chung T S.Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin[J].Chem. Eng. Sci., 2006, 61(17):5807-5817 [24] 国家药典委员会.中华人民共和国药典[M]. 二部. 北京: 中国医药科技出版社, 2015: 285-286. [25]National Pharmacopoeia Committee.Pharmacopoeia of the People’s Republic of China [M]. Part 2. Beijing: Chemical Industry Press, 2015: Appendix 285-286. |
相关文章 15
[1] | 孙帅 孙宏骞 宋静 曲景奎 王勇 齐涛. 动态扩散渗析法回收盐酸的实验与模型分析[J]. 过程工程学报, 2021, 21(1): 57-63. |
[2] | 付云枫 王玮玮. 从熔盐电解废渣中回收钪和氟[J]. 过程工程学报, 2020, 20(8): 929-937. |
[3] | 窦锦爱 张世中 岳晨. 循环热风低温干燥系统湿空气冷凝特性分析[J]. 过程工程学报, 2020, 20(6): 703-710. |
[4] | 杨文涛 陶天一 白皓 曹宏斌 孙峙. 电子废弃物机械–物理协同强化资源化利用的研究进展[J]. 过程工程学报, 2020, 20(12): 1363-1376. |
[5] | 肖庭 吕国强 王均鹏 杨雄东 马文会. 多晶硅金刚线切割废料制备Al-Si合金过程中的热力学和动力学分析[J]. 过程工程学报, 2020, 20(10): 1190-1197. |
[6] | 张菊花 梁月 张伟 薛正良. 钙化-酸浸提钒沉钒母液中锰的回收[J]. 过程工程学报, 2020, 20(10): 1174-1181. |
[7] | 王泽利 李鑫钢 郑成功 何林. 工业挥发性有机污染物控制与资源化利用[J]. 过程工程学报, 2019, 19(S1): 35-44. |
[8] | 侯蓉 曹志钦 赵赫 宁静恒 孟晓飞 孙姗姗. 混凝污泥的资源化回收及其电化学性能[J]. 过程工程学报, 2019, 19(6): 1234-1241. |
[9] | 王赶强 王景甫 张新欣 张涛. 金属基有机硅树脂涂层复合材料的导热性能[J]. 过程工程学报, 2018, 18(4): 785-791. |
[10] | 薄涛 季民. 筒状单室不锈钢电极微生物燃料电池回收重金属铅可行性分析[J]. 过程工程学报, 2018, 18(4): 858-865. |
[11] | 杜建华 李婷 倪辉 姜泽东 肖安风 朱艳冰. 以江蓠琼脂为原料制备生化琼脂[J]. 过程工程学报, 2018, 18(2): 434-440. |
[12] | 陈炎 程洁红. 醛肟萃取剂萃取分离废锂离子电池中的铜[J]. 过程工程学报, 2017, 17(6): 1170-1175. |
[13] | 朱一帆 李英波 梁向峰 咸漠 刘会洲. 3-羟基丙酸稀溶液的络合萃取[J]. 过程工程学报, 2017, 17(6): 1176-1181. |
[14] | 郭乃理 杨春生 肖鹏 黄建琼 李貌 隋良红 李兴贵. 工业低温烟气废热回收与梯级利用技术的研究与应用[J]. 过程工程学报, 2017, 17(5): 1091-1096. |
[15] | 李斌 伍联营 张伟涛 王颖 胡仰栋. 盐差发电系统的模拟优化[J]. 过程工程学报, 2017, 17(5): 1097-1101. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3170