引言
分数阶微积分几乎和整数阶微积分同时存在, 它的导数和积分的阶数可以是任意数[1]. 由于分数阶微分方程具有独特的能力来描述自然现象的共同特征?异常行为和记忆效应[2], 因此分数阶微分方程能比整数阶微分方程更准确地描述许多实际问题. 分数阶微分方程理论是数学的一个重要分支, 包括连续分数阶微分方程和离散分数阶差分方程. 在过去的数十年里, 分数阶微分方程理论得到了广泛的普及和应用[3-8], 但这些连续分数阶微分方程和离散分数阶差分方程是被分开研究的. 1988年Hilger[9]发现了离散系统和连续系统之间有许多相似之处, 因此提出了一个关于微分方程和差分方程的统一理论?时间尺度. 随后, Bohner等[10-12]意识到时间尺度微积分弥合了连续和离散系统之间的差距, 这个统一的方法意味着在复杂的新模型中可以考虑更多的变量. 不仅如此, 当时间尺度为
ight} $
ight) $
众所周知, Noether定理揭示了对称性和守恒量之间的内在关系[16]. 在群的无限小变换下作用量的不变性(Noether对称性)意味着沿着系统的动力学真实运动轨道上存在一个守恒量(Noether守恒量). 相比牛顿力学和Lagrange力学, 运用Noether对称性可以找到除了能量守恒、动量守恒或动量矩守恒之外更多的且相互独立的守恒量[17]. 因此, 近些年人们致力于研究力学系统的Noether定理[18-25]. 而利用时间尺度理论得到的Noether定理, 通过选择不同的尺度可同时表示连续时间变量、离散时间变量甚至分段时间变量的Noether定理.
2004年Bohner[26]研究了
1.
预备知识
设
ight) = infleft{{sin {T}:s>t}
ight} $
ho:{T} to {T} $
holeft(t
ight) = supleft{{sin{T}:s<t}
ight} $
ight) = sup{T} $
holeft({inf{T}}
ight) = inf{T} $
ight) = sigmaleft(t
ight)-t $
ight)geqslant 0$
holeft({sup{T}}
ight)}
ight.,left.{sup{T}}
ight] $
ight)cap{T}$
ight)}
ight) - fleft( s
ight) - }
ight.$
ight)left( {sigma left( t
ight) - s}
ight)}
ight|leqslant varepsilon left| {sigma left( t
ight) - s}
ight|$
ight)$
m{rd}}}^1$
定义1 设
$$ {h_{alpha+1}}left( {t,s} ight) = int_s^t {{h_alpha}left( {tau ,s} ight)Delta tau }, {kern 4pt} {h_0}left( {t,s} ight) = 1,{kern 4pt} t,s in {T} $$ | (1) |
定义2 设
ight] subset mathbb{R} $
$$ left. begin{array}{l} {}_aI_{Delta ,t}^alpha fleft( t ight) = fleft( t ight),{kern 79pt} { m{if}}{kern 4pt} alpha = 0 {}_aI_{Delta ,t}^alpha fleft( t ight) = displaystyleint_a^t {{h_{alpha - 1}}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau } ,{kern 4pt} t > a,{kern 8pt} { m{if}}{kern 4pt} alpha > 0 end{array} ight} $$ | (2) |
右Riemann-Liouville分数阶
$$ left. begin{array}{l} {}_tI_{Delta ,b}^alpha fleft( t ight) = fleft( t ight),{kern 82pt} { m{if}}{kern 4pt} alpha = 0 _tI_{Delta ,b}^alpha fleft( t ight) = displaystyleint_t^b {{h_{alpha - 1}}left( {sigma left( tau ight),t} ight)fleft( tau ight)Delta tau } ,{kern 4pt} t < b,{kern 8pt} { m{if}}{kern 4pt} alpha > 0 end{array} ight} $$ | (3) |
注1: 若
ight) = dfrac{{{{left( {t - a}
ight)}^{alpha - 1}}}}{{varGamma left( alpha
ight)}}$
$$ {}_aI_t^alpha fleft( t ight) =int_a^t {frac{{left( {t - tau } ight){}^{alpha - 1}}}{{varGamma left( alpha ight)}}fleft( tau ight){ m{d}}tau } ,{kern 4pt} t > a $$ | (4) |
并且有
ight) = dfrac{{{{left( {b - t}
ight)}^{alpha - 1}}}}{{varGamma left( alpha
ight)}}$
$$ {}_tI_b^alpha fleft( t ight) = int_t^b {frac{{left( {tau - t} ight){}^{alpha - 1}}}{{varGamma left( alpha ight)}}fleft( tau ight){ m{d}}tau } ,{kern 4pt} t < b $$ | (5) |
式(4)和式(5)是传统的左、右Riemann-Liouville分数阶积分[1].
注2: 若
$$ {t^{left( alpha ight)}} = frac{{varGamma left( {t + 1} ight)}}{{varGamma left( {t + 1 - alpha } ight)}},{kern 4pt} t in {T}, {kern 4pt} alpha in mathbb{R} $$ | (6) |
则有
ight) = dfrac{{{{left( {t - s}
ight)}^{left( {alpha - 1}
ight)}}}}{{varGamma left( alpha
ight)}}$
$$ begin{split}{}_aI_{Delta ,t}^alpha fleft( t ight) =& int_a^t {{h_{alpha - 1}}left( {t,sigma left( s ight)} ight)fleft( s ight)Delta s} = &int_a^t {frac{{left( {t - sigma left( s ight)} ight){}^{left( {alpha - 1} ight)}}}{{varGamma left( alpha ight)}}fleft( s ight)Delta s} =& frac{1}{{varGamma left( alpha ight)}}sumlimits_{s = a}^{t - 1} {left( {t - s - 1} ight){}^{left( {alpha - 1} ight)}fleft( s ight)} ,{kern 4pt} t geqslant a + 1 end{split} $$ | (7) |
和
$$ begin{split} {}_tI_{Delta ,b}^alpha fleft( t ight) = & int_t^b {{h_{alpha - 1}}left( {sigma left( s ight),t} ight)fleft( s ight)Delta s} =& int_t^b {frac{{left( {sigma left( s ight) - t} ight){}^{left( {alpha - 1} ight)}}}{{varGamma left( alpha ight)}}fleft( s ight)Delta s} =& frac{1}{{varGamma left( alpha ight)}}sumlimits_{s = t}^{b-1} {left( {s + 1 - t} ight){}^{left( {alpha - 1} ight)}fleft( s ight)} ,{kern 4pt} t leqslant b-1 end{split} $$ | (8) |
式(7)和式(8)是离散的左、右Riemann-Liouville分数阶积分.
注3: 若
ight)backslash {mathbb{N}_0} $
$$ left( {t - a} ight)_p^alpha = {t^alpha }mathop prod limits_{n = 0}^infty frac{{1 - dfrac{a}{t}{p^n}}}{{1 - dfrac{a}{t}{p^{alpha + n}}}} = {t^alpha }mathop prod limits_{n = 0}^infty frac{{t - a{p^n}}}{{t - a{p^{alpha + n}}}} $$ | (9) |
定义
ight) = 1 $
ight)dfrac{{{p^alpha } !-! 1}}{{p!-! 1}} !=! {varGamma _p}left( {alpha !-! 1}
ight)$
ight) = {varGamma _p}left( alpha
ight) cdot $
ight)_p^alpha$
$$ begin{split} {}_aI_{Delta ,t}^alpha fleft( t ight) = & int_a^t {{h_{alpha - 1}}left( {t,sigma left( s ight)} ight)fleft( s ight)Delta s} = & {varGamma _p}left( {alpha - 1} ight)int_a^t {left( {t - ps} ight)_p^{alpha - 1}fleft( s ight)Delta s}, & t,s in {T}, {kern 4pt} t geqslant s geqslant a end{split} $$ | (10) |
同样地, 有
ight) = {varGamma _p}left( alpha
ight)left( {b - t}
ight)_p^alpha $
$$ begin{split}{}_tI_{Delta ,b}^alpha fleft( t ight) = & int_t^b {{h_{alpha - 1}}left( {sigma left( s ight),t} ight)fleft( s ight)Delta s} = & {varGamma _p}left( {alpha - 1} ight)int_t^b {left( {ps - t} ight)_p^{alpha - 1}fleft( s ight)Delta s}& t,s in {T},{kern 4pt} t leqslant s leqslant b end{split} $$ | (11) |
式(10)和式(11)可分别称为
定义3 设
$$ begin{split} _aD_{Delta ,t}^alpha fleft( t ight) = &D_Delta ^mleft( {{}_aI_{Delta ,t}^{m - alpha }fleft( t ight)} ight) = &D_Delta ^mleft[ {int_a^t {{h_{m - alpha - 1}}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau } } ight], &t in {T},{kern 4pt} t > a end{split} $$ | (12) |
右Riemann-Liouville分数阶
$$ begin{split} {}_tD_{Delta ,b}^alpha fleft( t ight) = &- D_Delta ^mleft( {{}_tI_{Delta ,b}^{m - alpha }fleft( t ight)} ight) = & - D_Delta ^mleft[ {int_t^b {{h_{m - alpha - 1}}left( {sigma left( tau ight),t} ight)fleft( tau ight)Delta tau } } ight], & t in {T},{kern 4pt} t <b end{split} $$ | (13) |
式中
ight]} + 1 $
注4: 若
$$ _aD_{Delta ,t}^alpha fleft( t ight){ = _a}I_{Delta ,t}^{ - alpha }fleft( t ight),{kern 4pt} a,t in {T},{kern 4pt} t > a qquadqquadqquad $$ | (14) |
$$ _aI_{Delta ,t}^alpha fleft( t ight){ = _a}D_{Delta ,t}^{ - alpha }fleft( t ight),{kern 4pt} a,t in {{T}^{{kappa ^r}}},{kern 4pt} t > a,{kern 4pt} r = overline {left[ { - alpha } ight]} + 1 $$ | (15) |
注5: 假设
ight]} + 1 $
$$ _aD_{Delta ,t}^alpha fleft( t ight) = int_a^t {{h_{ - alpha - 1}}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau },{kern 4pt} t in {T},{kern 4pt} t > a $$ | (16) |
若
$$ begin{split} {}_aD_{Delta ,t}^alpha fleft( t ight) =& {D_Delta }left[ {int_a^t {{h_{ - alpha }}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau } } ight] = & int_a^t {h_{ - alpha }^{{Delta _t}}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau } + {h_{ - alpha }}left( {sigma left( t ight),sigma left( t ight)} ight)fleft( t ight) = & int_a^t {{h_{ - alpha - 1}}left( {t,sigma left( tau ight)} ight)fleft( tau ight)Delta tau } + {h_{ - alpha }}left( {sigma left( t ight),sigma left( t ight)} ight)fleft( t ight) &t in {T},{kern 4pt} t > a [-12pt]end{split} $$ | (17) |
定义4 设
$$ begin{split} {}_a^CD_{Delta ,t}^alpha fleft( t ight) = & {}_aI_{Delta ,t}^{1 - alpha }{f^Delta }left( t ight) = int_a^t {{h_{ - alpha }}left( {t,sigma left( tau ight)} ight){f^Delta }left( tau ight)Delta tau } =& { _a}D_{Delta ,t}^alpha left( {fleft( t ight) - sumlimits_{k = 0}^{m - 1} {{h_k}left( {t,a} ight){f^{{Delta ^k}}}left( a ight)} } ight)[-12pt] end{split} $$ | (18) |
右Caputo分数阶
$$ begin{split} {}_t^CD_{Delta ,b}^alpha fleft( t ight) = & - {}_tI_{Delta ,b}^{1 - alpha }{f^Delta }left( t ight) = - int_t^b {{h_{ - alpha }}left( {sigma left( tau ight),t} ight){f^Delta }left( tau ight)Delta tau } = & { _t}D_{Delta ,b}^alpha left( {fleft( t ight) - sumlimits_{k = 0}^{m - 1} {{h_k}left( {b,t} ight){f^{{Delta ^k}}}left( b ight)} } ight)[-12pt] end{split} $$ | (19) |
式中若
ight]} + 1 $
ight]} $
注6: 若
ight) $
$$ begin{split} {}_a^CD_{Delta ,t}^alpha fleft( t ight) =& { _a}D_{Delta ,t}^alpha left( {fleft( t ight) - sumlimits_{k = 0}^0 {{h_k}left( {t,a} ight){f^{{Delta ^k}}}left( a ight)} } ight)= & {_a}D_{Delta ,t}^alpha left( {fleft( t ight) - {h_0}left( {t,a} ight)fleft( a ight)} ight) =& {_a}D_{Delta ,t}^alpha left( {fleft( t ight) - fleft( a ight)} ight) end{split} $$ | (20) |
$$ {}_t^CD_{Delta ,b}^alpha fleft( t ight){ = _t}D_{Delta ,b}^alpha left( {fleft( b ight) - fleft( t ight)} ight)qquadqquadqquad $$ | (21) |
当
ight) = 0 $
ight) = 0 $
同样地, 当
引理1 设函数
$$ {left( {fg} ight)^Delta }left( t ight) = {f^Delta }left( t ight)gleft( t ight) + {f^sigma }left( t ight){g^Delta }left( t ight) = fleft( t ight){g^Delta }left( t ight) + {f^Delta }left( t ight){g^sigma }left( t ight) $$ | (22) |
引理2 令函数
m{rd}}}}$
ight] to {mathbb{R}^n} $
m{rd}}}^1$
ight) = g left( b
ight) = 0 $
m{T}}}} left( t
ight){g^Delta }left( t
ight)Delta t = 0$
ight) = c $
引理3 令
ight) $
ight) $
ight)}
ight) $
$$ {left( {omega circ nu } ight)^Delta } = left( {{omega ^{bar Delta }} circ nu } ight){nu ^Delta } $$ | (23) |
若
$$ frac{1}{{{nu ^Delta }}} = {left( {{nu ^{ - 1}}} ight)^{bar Delta }} circ nu $$ | (24) |
其中
$$ int_a^b {fleft( t ight){nu ^Delta }left( t ight)Delta t} = int_{nu left( a ight)}^{nu left( b ight)} {left( {f circ {nu ^{ - 1}}} ight)left( s ight)bar Delta s} $$ | (25) |
其中
引理4 假设函数
$$ begin{split}& int_a^b {gleft( t ight)} {{}_a^CD_{Delta ,t}^alpha fleft( t ight)} Delta t = &qquadint_a^b {{f^sigma }left( t ight)}{{}_tD_{Delta ,b}^alpha gleft( t ight)} Delta t + left. {left( {fleft( t ight) {{}_tI_{Delta ,b}^{1 - alpha }gleft( t ight)} } ight)} ight|_a^b end{split} $$ | (26) |
$$ begin{split} &int_a^b {gleft( t ight)} {{}_t^CD_{Delta ,b}^alpha fleft( t ight)} Delta t =&qquadint_a^b {{f^sigma }left( t ight)} {{}_aD_{Delta ,t}^alpha gleft( t ight)} Delta t - left. {left( {fleft( t ight){{}_aI_{Delta ,t}^{1 - alpha }gleft( t ight)}} ight)} ight|_a^b end{split} $$ | (27) |
2.
Caputo $ {boldsymbol{Delta}} $ 型分数阶时间尺度Lagrange方程
假设力学系统的位形是由
ight) $
$$ Sleft[ {qleft( cdot ight)} ight] = int_a^b {Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight)Delta t} $$ | (28) |
其中
ight] subsetmathbb{R} $
ight) = {q_k}left( {sigma left( t
ight)}
ight) $
ight] times {{mathbb{R}}^n} times {{mathbb{R}}^n} tomathbb{R} $
ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t
ight)}
ight) $
ight),{{dot q}_k}left( t
ight)}
ight) $
Caputo
$$ delta S = 0 $$ | (29) |
其满足交换关系
$$ delta {}_a^CD_{Delta ,t}^alpha {q_k} = {}_a^CD_{Delta ,t}^alpha delta {q_k}, {kern 4pt} {left( {delta {q_k}} ight)^sigma } = delta q_k^sigma $$ | (30) |
和边界条件
$$ {left. {delta {q_k}left( t ight)} ight|_{t = a}} = 0, {kern 4pt} delta {left. {{q_k}left( t ight)} ight|_{t = b}} = 0 $$ | (31) |
对式(28)进行变分运算, 得
$$ delta S = displaystyleint_a^b {left( {frac{{partial L}}{{partial q_k^sigma }}delta q_k^sigma + frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}delta {}_a^CD_{Delta ,t}^alpha {q_k}} ight)Delta t} $$ | (32) |
根据分数阶时间尺度分部积分公式(26), 再由式(30)和式(32), 可得
$$ begin{split}&displaystyleint_a^b {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}delta {}_a^CD_{Delta ,t}^alpha {q_k}Delta t} = & qquad displaystyleint_a^b {delta q_k^sigma left[ {{}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight)} ight]Delta t} +& qquad left. {left{delta {q_k}left[ {{}_tI_{Delta ,b}^{1 - alpha }left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight)} ight] ight}} ight|_a^b = & qquad displaystyleint_a^b {delta q_k^sigma left[ {{}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight)} ight]Delta t} end{split} $$ | (33) |
将式(33)代入式(32), 则有
$$ displaystyleint_a^b {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight)} ight]delta q_k^sigma Delta t} = 0 $$ | (34) |
由式(22)和式(31), 方程(34)可写为
$$ begin{split} &displaystyleint_a^b {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight)} ight]delta q_k^sigma Delta t} = &qquad displaystyleint_a^b {{{left{ {left{ {left{ {displaystyleint_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta } } ight}delta {q_k}} ight}} ight.}^Delta }} - &qquad left. {left{ {displaystyleint_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta } } ight}{{left( {delta {q_k}} ight)}^Delta }} ight}Delta t = &qquadleft. {left{ {left{ {displaystyleint_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta } } ight}delta {q_k}} ight}} ight|_a^b -&qquad displaystyleint_a^b {left{ {displaystyleint_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta} } ight}{{left( {delta {q_k}} ight)}^Delta }Delta t} = &qquad -!displaystyleint_a^b {left{ {displaystyleint_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} !+! {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta } } ight}{{left( {delta {q_k}} ight)}^Delta }Delta t} !!=!!0 end{split} $$ | (35) |
根据引理2, 可得
$$ int_a^t {left[ {frac{{partial L}}{{partial q_k^sigma }} + {}_theta D_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,theta}^alpha {q_k}}}} ight)} ight]Delta theta} = { m{const}} . $$ | (36) |
在式(36)两边对
$$ frac{{partial L}}{{partial q_k^sigma }} + {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight) = 0 $$ | (37) |
方程(37)则是Caputo
注7: 若
$$ frac{{partial L}}{{partial q_k^sigma }} - frac{Delta }{{Delta t}}left( {frac{{partial L}}{{partial q_k^Delta }}} ight) = 0 $$ | (38) |
注8: 若
$$ frac{{partial L}}{{partial {q_k}}} + {}_tD_b^alpha left( {frac{{partial L}}{{partial {}_a^CD_t^alpha {q_k}}}} ight) = 0 $$ | (39) |
注9: 若
$$ frac{{partial L}}{{partial {q_k}}} - frac{{ m{d}} }{{{ m{d}} t}}left( {frac{{partial L}}{{partial {dot{q}_k}}}} ight) = 0 $$ | (40) |
3.
特殊无限小变换下的分数阶时间尺度Noether定理
引进单参数群的特殊无限小变换
$$ {bar q_k}left( t ight) = {q_k}left( t ight) + varepsilon {xi _k}left( {t,{q_j}} ight) + oleft( varepsilon ight),{kern 4pt} k = 1,2,cdots,n $$ | (41) |
式中
ight) $
定义5 对任意的
ight] subseteq left[ {a,b}
ight] $
$$ begin{split}&int_{{t_a}}^{{t_b}} {Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight)Delta t} =&qquadint_{{t_a}}^{{t_b}} {Lleft( {t,bar q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {{bar q}_k}left( t ight)} ight)Delta t} end{split} $$ | (42) |
则称Hamilton作用量式(28)在特殊无限小变换式(41)下是不变的.
判据1 若Hamilton作用量式(28)在特殊无限小变换式(41)下是不变的, 则有
$$ xi _k^sigma frac{{partial L}}{{partial q_k^sigma }} + frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}{}_a^CD_{Delta ,t}^alpha {xi _k} = 0 $$ | (43) |
证明: 由定义5可知, 对任意的子空间
ight] subseteq left[ {a,b}
ight] $
$$ Lleft( {t,q_k^sigma ,{}_a^CD_{Delta ,t}^alpha {q_k}} ight) = Lleft( {t,q_k^sigma + varepsilon xi _k^sigma ,{}_a^CD_{Delta ,t}^alpha left( {{q_k} + varepsilon {xi _k}} ight)} ight) $$ | (44) |
在式(44)中对
$$ begin{split} 0 = & xi _k^sigma frac{{partial L}}{{partial q_k^sigma }} + {left. {left{ {frac{Delta }{{Delta varepsilon }}left[ {int_a^t {{h_{ - alpha }}left( {t,sigma left( tau ight)} ight)bar q_k^Delta left( tau ight)Delta tau } } ight]} ight}} ight|_{varepsilon = 0}}cdot& frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}} = xi _k^sigma frac{{partial L}}{{partial q_k^sigma }} + frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}{}_a^CD_{Delta ,t}^alpha {xi _k} end{split} $$ | (45) |
记符号
$$ {cal{D}}_Delta ^alpha left[ {f,g} ight] = g cdot {}_a^CD_{Delta ,t}^alpha f - {f^sigma } cdot {}_tD_{Delta ,b}^alpha g $$ | (46) |
则记
$$ begin{split}&{cal{D}}_Delta ^alpha left[ {{xi _k},frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight] = &qquadfrac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}{}_a^CD_{Delta ,t}^alpha {xi _k}- xi _k^sigma cdot {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight) end{split} $$ | (47) |
定理1 若Hamilton作用量(28)在定义5的意义上是不变的, 则存在守恒量
$$ I = int_a^t {{{cal{D}}}_Delta ^alpha left[ {{xi _k},frac{{partial L}}{{partial _a^CD_{Delta ,t}^alpha {q_k}}}} ight]} Delta t = { m{const}}. $$ | (48) |
证明: 对式(48)中的
$$ I^{Delta} = frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}{}_a^CD_{Delta ,t}^alpha {xi _k}- xi _k^sigma cdot {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight) $$ | (49) |
由分数阶时间尺度Lagrange方程(37)可知
$$ frac{{partial L}}{{partial q_k^sigma }} = - {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight) $$ | (50) |
将式(50)代入式(43), 可得
$$ - xi _k^sigma cdot {}_tD_{Delta ,b}^alpha left( {frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}} ight) + frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}{}_a^CD_{Delta ,t}^alpha {xi _k} = 0 $$ | (51) |
即
注10: 若
$$ I = xi_kcdotfrac{{partial L}}{{partial {q_k^Delta }}} = { m{const}} . $$ | (52) |
4.
一般无限小变换下的分数阶时间尺度Noether定理
本节研究一般无限小变换下的分数阶时间尺度Noether定理. 首先, 引进单参数
ight) $
$$ left. begin{array}{l} begin{array}{l} bar t = {T_varepsilon }left( t ight) = t + varepsilon zeta left( {t,{q_j}} ight) + oleft( varepsilon ight) {bar q_k}left( {bar t} ight) = Q_varepsilon ^kleft( {t,{q_j}} ight) = {q_k} left( t ight)+ varepsilon {xi _k}left( {t,{q_j}} ight) + oleft( varepsilon ight) end{array} end{array} ight} $$ | (53) |
式中
ight) $
定义6 对任意的
ight] subseteq left[ {a,b}
ight] $
$$ begin{split} &int_{{t_a}}^{{t_b}} {Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight)Delta t} = &qquadint_{nu left( {{t_a}} ight)}^{nu left( {{t_b}} ight)} {Lleft( {bar t,bar q_k^{bar sigma }left( {bar t} ight),left( {{}_{nu left(a ight)}^CD_{bar Delta ,bar t}^alpha {{bar q}_k}} ight)left( {bar t} ight)} ight)bar Delta bar t} end{split} $$ | (54) |
则称Hamilton作用量式(28)在一般无限小变换式(53)下是不变的.
判据2 若Hamilton作用量式(28)在一般无限小变换式(53)下是不变的, 则有
$$ begin{split}&frac{{partial L}}{{partial t}}{zeta} + frac{{partial L}}{{partial q_k^sigma }}xi _k^sigma + frac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}left( {{}_a^CD_{Delta ,t}^alpha {xi _k} -alpha cdot{zeta ^Delta } cdot {}_a^CD_{Delta ,t}^alpha {q_k}} ight)+&qquad Lzeta^Delta = 0 [-12pt]end{split} $$ | (55) |
证明: 由定义4和引理3, 可得
$$ begin{split}&left( {{}_{nu left( a ight)}^CD_{bar Delta ,bar t}^alpha {{bar q}_k}} ight)left( {bar t} ight) = &qquad int_{nu left( a ight)}^{nu left( t ight)} {{h_{ - alpha }}left( {bar t,bar sigma left( {bar theta } ight)} ight)} bar q_k^{bar Delta }left( {bar theta } ight)bar Delta {bar theta } = &qquad int_a^t {{h_{ - alpha }}left( {nu left( t ight),left( {bar sigma circ nu } ight)left( theta ight)} ight) cdot bar q_k^{bar Delta }left( {nu left( theta ight)} ight) cdot {nu ^Delta }left( theta ight)Delta theta } =&qquad int_a^t {{h_{ - alpha }}left( {nu left( t ight),left( {bar sigma circ nu } ight)left( theta ight)} ight) cdot {{left( {{{bar q}_k} circ nu left( theta ight)} ight)}^Delta }Delta theta } =&qquad frac{{{}_a^CD_{Delta ,t}^alpha left( {{{bar q}_k} circ nu } ight)left( t ight)}}{{left( {{nu ^Delta }left( t ight)} ight)}^alpha} end{split} $$ | (56) |
由定义6可知
$$ begin{split} & displaystyleint_{{t_a}}^{{t_b}} {Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight)Delta t} = & qquad displaystyleint_{nu left( {{t_a}} ight)}^{nu left( {{t_b}} ight)} {Lleft( {bar t,bar q_k^{bar sigma }left( {bar t} ight),left( {{}_a^CD_{bar Delta ,bar t}^alpha {{bar q}_k}} ight)left( {bar t} ight)} ight)bar Delta bar t} = & qquad displaystyleint_{{t_a}}^{{t_b}} {Lleft( {nu left( t ight),left( {{{bar q}_k} circ bar sigma circ nu } ight)left( t ight),frac{{{}_a^CD_{Delta ,t}^alpha left( {{{bar q}_k} circ nu } ight)left( t ight)}}{{left( {{nu ^Delta }left( t ight)} ight)^alpha}}} ight)cdot {nu ^Delta }left( t ight)Delta t} !!= & qquaddisplaystyleint_{{t_a}}^{{t_b}} {Lleft( {{T_varepsilon },{{left( {Q_varepsilon ^k} ight)}^sigma },frac{{{}_a^CD_{Delta ,t}^alpha Q_varepsilon ^k}}{{left( {T_varepsilon ^Delta } ight)^alpha}}} ight)cdot T_varepsilon ^Delta Delta t}[-12pt] end{split} $$ | (57) |
由于
ight] $
ight] $
$$ Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight) = Lleft( {{T_varepsilon },{{left( {Q_varepsilon ^k} ight)}^sigma },frac{{{}_a^CD_{Delta ,t}^alpha Q_varepsilon ^k}}{{left( {T_varepsilon ^Delta } ight)^alpha}}} ight)cdot T_varepsilon ^Delta $$ | (58) |
在式(58)中对
$$ begin{split}&0 = frac{{partial L}}{{partial t}}{zeta} + frac{{partial L}}{{partial q_k^sigma }}xi _k^sigma + left( {{}_a^CD_{Delta ,t}^alpha {xi _k} -alpha cdot{zeta ^Delta } cdot {}_a^CD_{Delta ,t}^alpha {q_k}} ight)cdot &qquadfrac{{partial L}}{{partial {}_a^CD_{Delta ,t}^alpha {q_k}}}+ Lzeta^Delta end{split} $$ | (59) |
注11: 考虑到
$$ {T_varepsilon } = T_varepsilon ^sigma - mu left( t ight)T_varepsilon ^Delta $$ | (60) |
不变性的条件(57)可写为
$$ begin{split} & displaystyleint_{{t_a}}^{{t_b}} {Lleft( {t,q_k^sigma left( t ight),{}_a^CD_{Delta ,t}^alpha {q_k}left( t ight)} ight)Delta t} = & qquad displaystyleint_{{t_a}}^{{t_b}} {Lleft( {T_varepsilon ^sigma - mu left( t ight)T_varepsilon ^Delta ,{{left( {Q_varepsilon ^k} ight)}^sigma },frac{{{}_a^CD_{Delta ,t}^alpha Q_varepsilon ^k}}{{left( {T_varepsilon ^Delta } ight)^alpha}}} ight) cdot T_varepsilon ^Delta Delta t} end{split} $$ | (61) |
接下来, 引进扩展Lagrange函数
ight] times {mathbb{R}^n} times $
$$ {boldsymbol{L}}left( {tau ;t,q,w,v} ight) = Lleft( {t - mu left( tau ight)w,q,frac{v}{w^alpha}} ight)w $$ | (62) |
其作用量用
$$ begin{split}&{S_{{boldsymbol{L}}}}left( {t,q_k} ight) = &qquad int_{{t_a}}^{{t_b}} {boldsymbol{L}left( {tau ;{t^sigma }left( tau ight),left( {q_k^sigma circ t} ight)left( tau ight),{t^Delta }left( tau ight),{}_{a}^CD_{Delta ,tleft(tau ight)}^alpha {q_k}left( tau ight)} ight)} Delta tau end{split} $$ | (63) |
设时间尺度束类路径[45]被定义为
$$ begin{split}{cal{F}} = & left{ {left( {t,q} ight) in C_{{ m{rd}}}^{1,Delta }left( {T} ight) times C_{{ m{rd}}}^{1,Delta }left( {T} ight);} ight. & {tau mapsto left( {tleft( tau ight),left( {q circ t} ight)left( t ight)} ight) = left( {tau ,qleft( tau ight)} ight)} Big} end{split} $$ | (64) |
当
$$ begin{split} &{boldsymbol{L}}left( {tau ;{t^sigma }left( tau ight),q_k^sigma left( tau ight),{tau ^Delta },{}_{a}^CD_{Delta ,tau}^alpha {q_k}left( tau ight)} ight) =&qquad Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) end{split} $$ | (65) |
在
$$ {S_{{boldsymbol{L}}}}left( {t,q_k} ight) = int_{{t_a}}^{{t_b}} {boldsymbol{L} left( {tau ;T_varepsilon ^sigma ,{{left( {Q_varepsilon ^k} ight)}^sigma },T_varepsilon ^{bar Delta },{}_a^CD_{bar Delta ,tau }^alpha Q_varepsilon ^k} ight)} bar Delta tau $$ | (66) |
在方程(66)中对
$$ begin{split}&{partial _t}{boldsymbol{L}}left( * ight) cdot {zeta ^sigma } + {partial _q}{boldsymbol{L} }left( * ight) cdot xi _k^sigma + {partial _w}{boldsymbol{L}}left( * ight) cdot {zeta ^Delta }+&qquad {partial _v}{boldsymbol{L} }left( * ight) cdot {{}_a^CD_{bar Delta ,tau }^alpha {xi_k }} = 0 end{split} $$ | (67) |
式中
ight) buildrel Delta over = left( {tau ;{tau ^sigma },q_k^sigma left( tau
ight),{tau ^{bar Delta }},{}_{a}^CD_{bar Delta ,tau }^alpha {q_k}left( tau
ight)}
ight) $
$$ left. begin{array}{l} {partial _t}{boldsymbol{L} }left( {tau ;{t^sigma },q,w,v} ight) = {partial _t}Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight) cdot w {partial _q}{boldsymbol{L}}left( {tau ;{t^sigma },q,w,v} ight) = {partial _q}Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight) cdot w {partial _w}{boldsymbol{L} }left( {tau ;{t^sigma },q,w,v} ight)= quad Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight) - {partial _v}Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight) cdot quad dfrac{alpha cdot v}{w^alpha}- {partial _t}Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight) cdot mu left( tau ight) cdot w {partial _v}{boldsymbol{L} }left( {tau ;{t^sigma },q,w,v} ight) = {partial _v}Lleft( {{t^sigma } - mu left( tau ight)w,q,dfrac{v}{w^alpha}} ight)cdot w end{array} ight} $$ | (68) |
在
$$ left. begin{array}{l} {partial _t}{boldsymbol{L} }left( {tau ;{tau ^sigma },{q_k}left( tau ight),1,{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) = quad {partial _t}Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) {partial _{{q_k}}}{boldsymbol{L} }left( {tau ;{tau ^sigma },{q_k}left( tau ight),1,{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) = quad {partial _{{q_k}}}Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) {partial _w}{boldsymbol{L} }left( {tau ;{tau ^sigma },{q_k}left( tau ight),1,{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) = quad Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight)quad -{partial _v}Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) cdot alpha cdot{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)quad - {partial _t}Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) cdot mu left( tau ight) {partial _v}{boldsymbol{L} }left( {tau ;{tau ^sigma },{q_k}left( tau ight),1,{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) = quad {partial _v}Lleft( {tau ,q_k^sigma left( tau ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau ight)} ight) end{array} ight} $$ | (69) |
将式(69)代入式(67), 得
$$ begin{split}&{partial _t}Lleft( bullet ight) cdot {zeta ^sigma } + left( {Lleft( bullet ight) -alpha cdot {partial _v}Lleft( bullet ight) cdot {}_a^CD_{Delta ,t}^alpha {q_k} - {partial _t}Lleft( bullet ight) cdot mu left( tau ight)} ight) cdot &qquad{zeta ^Delta }+ {partial _{q_k}}Lleft( bullet ight) cdot xi _k^sigma + {partial _v}Lleft( bullet ight) cdot {{}_a^CD_{Delta ,tau }^alpha {xi_k }} = 0[-12pt] end{split} $$ | (70) |
式中
ight) buildrel Delta over = left( {tau ,q_k^sigma left( tau
ight),{}_a^CD_{Delta ,tau }^alpha {q_k}left( tau
ight)}
ight) $
$$ begin{split}& {partial _t}Lleft( bullet ight) cdot {zeta ^sigma } + Big( Lleft( bullet ight) - alpha cdot {partial _v}Lleft( bullet ight) cdot {}_a^CD_{Delta ,t}^alpha {q_k} - &qquad {partial _t}Lleft( bullet ight) cdot mu left( tau ight) Big) cdot{zeta ^Delta } + {cal{D}}_Delta ^alpha left[ {{xi _k},{partial _v}L} ight] = 0 end{split} $$ | (71) |
令
$$ {cal{H}}left( bullet ight) = -Lleft( bullet ight) + alpha cdot {partial _v}Lleft( bullet ight) cdot {}_a^CD_{Delta ,t}^alpha {q_k} + {partial _t}Lleft( bullet ight) cdot mu left( tau ight) $$ | (72) |
则有
$$ left( {{partial _t}Lleft( bullet ight) +{{cal{H}}^Deltaleft( bullet ight)}} ight) cdot {zeta ^sigma } - {left( { {cal{H}}left( bullet ight) cdot zeta } ight)^Delta } + {cal{D}}_Delta ^alpha left[ {{xi _k},{partial _v}L} ight] = 0 $$ | (73) |
因此, 可得到如下的Caputo
定理2 若Hamilton作用量(28)在定义6的意义上是不变的, 则存在守恒量
$$ begin{split} I = & int_a^t {left( {{partial _t}Lleft( bullet ight) + {{cal{H}}^Delta left( bullet ight)}} ight) cdot {zeta ^sigma }Delta tau}-& {cal{H}}left( {t,q_k^sigma left( t ight),{}_{a}^CD_{Delta ,t }^alpha {q_k}left(t ight)} ight) cdot zeta+ {{xi _k}cdot {{}_tI_{Delta ,b}^{1 - alpha }{partial _v}L}}= { m{const}}. end{split} $$ | (74) |
注12: 若
$$ begin{array}{l} left( {{partial _t}Lleft( star ight) +{{cal{H}}^Delta left( star ight)}} ight) cdot {zeta ^sigma } + {Big(- { {cal{H}}left( star ight) cdot zeta } +{partial _v}Lleft( star ight)cdot{xi _k} Big)^Delta } = 0 end{array} $$ | (75) |
式中
ight) = left( {tau ,q_k^sigma left( tau
ight),{q_k^Delta}left( tau
ight)}
ight) $
$$ begin{split}I =& int_a^t {left( {{partial _t}Lleft( star ight) + {{cal{H}}^Delta left( star ight)}} ight) cdot {zeta ^sigma }Delta tau}- & { {cal{H}}left( star ight) cdot zeta } +{partial _v}Lleft( star ight)cdot{xi _k} = { m{const}}.end{split} $$ | (76) |
注13: 若
$$ begin{split}&{partial _t}Lleft( {diamond} ight) cdot zeta + {partial _q}Lleft( {diamond} ight) cdot {xi _k} + Lleft( {diamond} ight) cdot dot zeta + &qquad{partial _v}Lleft( {diamond} ight) cdot left( { - alpha cdot dot zeta cdot {}_a^CD_tau^alpha {q_k} + {}_a^CD_tau^alpha {xi _k}} ight) = 0 end{split} $$ | (77) |
式中
ight) = left( {tau ,q_k left( tau
ight),{}_a^CD_tau^alpha {q_k}left( tau
ight)}
ight) $
ight) = {partial _t}Lleft( {diamond}
ight) + $
ight) cdot {{dot q}_k} + {partial _v}Lleft( {diamond}
ight) cdot {}_a^CD_t^alpha {{dot q}_k} $
m{d}}}{{{
m{d}}t}}Big( {Lleft( {diamond}
ight)zeta } Big) = dot Lleft( {diamond}
ight)zeta + Lleft( {diamond}
ight)dot zeta$
$$ begin{split}I =& Lleft( diamondsuit ight) cdot zeta + int_a^t {left[ {_tD_b^alpha Big( {{partial _v}Lleft( diamondsuit ight)} Big) cdot left( {{{dot q}_k}zeta - {xi _k}} ight) - {partial _v}Lleft( diamondsuit ight)} ight.}cdot &left. { left( {zeta cdot _a^CD_{tau}^alpha {{dot q}_k} + alpha cdot dot zeta cdot _a^CD_{tau}^alpha {q_k} - _a^CD_{tau}^alpha {xi _k}} ight)} ight]{ m{d}}tau end{split} $$ | (78) |
5.
算例
例1 众所周知, Kepler问题是牛顿力学中最早解决的问题之一, Kepler系统也是最早发现的可积系统之一. Kepler问题仍在研究中, 并被广泛应用于各个领域. Eleonski?等[50]指出分数阶Kepler问题中所有有限运动的轨道也是封闭的. Anerot等[45] 研究了平面上的时间尺度Kepler问题的Noether定理. 在这里, 我们考虑定义在
ight}}
ight) times {{mathbb{R}}^2} $
$$ begin{split}&Lleft( {q_1^sigma ,q_2^sigma ,{}_a^CD_{Delta ,t}^alpha {q_1},{}_a^CD_{Delta ,t}^alpha {q_2}} ight) =&qquad frac{1}{2}left[ {{{left( {{}_a^CD_{Delta ,t}^alpha {q_1}} ight)}^2} + {{left( {{}_a^CD_{Delta ,t}^alpha {q_2}} ight)}^2}} ight] + {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{1}{2}}} end{split} $$ | (79) |
其表示Kepler问题中两个质量为1的相互作用粒子的Lagrange函数. 其中, 用分数阶导数
ight) $
$$ left. begin{array}{l} - q_1^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} + {}_tD_{Delta ,b}^alpha left( {{}_a^CD_{Delta ,t}^alpha {q_1}} ight) = 0 - q_2^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} + {}_tD_{Delta ,b}^alpha left( {{}_a^CD_{Delta ,t}^alpha {q_2}} ight) = 0 end{array} ight} $$ | (80) |
考虑到判据2, 可得
$$ begin{split}& - q_1^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} cdot xi _1^sigma - q_2^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} cdot xi _2^sigma +&qquad {}_a^CD_{Delta ,t}^alpha {q_1}left( {{}_a^CD_{Delta ,t}^alpha {xi _1} - alpha cdot {zeta ^Delta } cdot {}_a^CD_{Delta ,t}^alpha {q_1}} ight) + &qquad {}_a^CD_{Delta ,t}^alpha {q_2}left( {{}_a^CD_{Delta ,t}^alpha {xi _2} - alpha cdot {zeta ^Delta } cdot {}_a^CD_{Delta ,t}^alpha {q_2}} ight) +&qquad left{ {frac{1}{2}left[ {{{left( {_a^CD_{Delta ,t}^alpha {q_1}} ight)}^2} + {{left( {_a^CD_{Delta ,t}^alpha {q_2}} ight)}^2}} ight] + } ight.&qquadleft. {{{left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]}^{ - frac{1}{2}}}} ight}{zeta ^Delta } = 0[-12pt]end{split} $$ | (81) |
这样, 我们可以得到两组无限小变换的解
$$ zeta = - 1,{kern 4pt} {xi _1} = {xi _2} = 0 qquad$$ | (82) |
$$ zeta = 0,{kern 4pt} {xi _1} = - {q_2},{kern 4pt} {xi _2} = {q_1} $$ | (83) |
由定理2, 可以得到两个守恒量
$$ {I_1} = int_a^t {{{cal{H}}^Delta }} Delta tau - {cal{H}} qquadqquadqquadqquadqquad $$ | (84) |
$$ {I_2} = - {q_2} cdot {}_tI_{Delta ,b}^alpha left( {{}_a^CD_{Delta ,t}^alpha {q_1}} ight) + {q_1} cdot {}_tI_{Delta ,b}^alpha left( {{}_a^CD_{Delta ,t}^alpha {q_2}} ight) $$ | (85) |
式中
ight.left. {dfrac{{partial L}}{{partial _a^CD_{Delta ,t}^alpha {q_2}}} !cdot! _a^CD_{Delta ,t}^alpha {q_2}}
ight) !+$
如果初始条件满足
ight) $
$$ {h_alpha }left( {t,s} ight) = frac{{{lambda ^alpha }{{left( {frac{{t - s}}{lambda }} ight)}^{left( alpha ight)}}}}{{varGamma left( {alpha + 1} ight)}} $$ | (86) |
令
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/7//21-108-1.jpg'"
class="figure_img
figure_type1 bbb " id="Figure1" />
图
1
Figure
1.
Simulation of
下载:
全尺寸图片
幻灯片
从图1可以看出, 在不同的时间尺度上, 轨迹
ight] $
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/7//21-108-2.jpg'"
class="figure_img
figure_type1 bbb " id="Figure2" />
图
2
ight]$
Figure
2.
Simulation of
ight]$
下载:
全尺寸图片
幻灯片
从图2可以看出, 当在同一时间尺度上而
$$ left. begin{array}{l} q_1^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} + q_1^{Delta Delta } = 0 q_2^sigma {left[ {{{left( {q_1^sigma } ight)}^2} + {{left( {q_2^sigma } ight)}^2}} ight]^{ - frac{3}{2}}} + q_2^{Delta Delta } = 0 end{array} ight} $$ | (87) |
从而守恒量为
$$ {I_1} = int_a^t {{{{cal{H}}}^Delta }} Delta tau - {cal{H}} $$ | (88) |
$$ {I_2} = - {q_2}cdot{q_1^Delta } + {q_1}cdot{q_2^Delta } $$ | (89) |
式中
ight)}^2} + {{left( {q_2^Delta }
ight)}^2}}
ight] - {left[ {{{left( {q_1^sigma }
ight)}^2} + {{left( {q_2^sigma }
ight)}^2}}
ight]^{ - frac{1}{2}}} $
ight] $
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/7//21-108-3.jpg'"
class="figure_img
figure_type1 bbb " id="Figure3" />
图
3
ight]$
Figure
3.
Simulation of
ight]$
下载:
全尺寸图片
幻灯片
图3证明了当
例2 由于分数阶导数和积分具有记忆效应, 分数阶微积分为描述阻尼材料和黏弹性材料提供了更切实的模型. 以单自由度线性分数阶振动系统为例, 其Lagrange函数为
$$ L = frac{1}{2}exp left( {gamma t} ight) cdot left[ {{{left( {{}_a^CD_{Delta ,t}^alpha q} ight)}^2} - {{left( {{q^sigma }} ight)}^2}} ight] $$ | (90) |
在时间尺度
ight} $
由分数阶时间尺度Lagrange方程(37), 得
$$ - exp left( {gamma t} ight) cdot {q^sigma } = - {}_tD_{Delta ,b}^alpha left[ {exp left( {gamma t} ight) cdot {}_a^CD_{Delta ,t}^alpha q} ight] $$ | (91) |
若
$$ ddot q + gamma dot q + q = 0 $$ | (92) |
则可称方程(91)为分数阶时间尺度阻尼振子. 由判据2, 有
$$ begin{split}& frac{gamma }{2}exp left( {gamma t} ight) cdot left[ {{{left( {{}_a^CD_{Delta ,t}^alpha q} ight)}^2} - {{left( {{q^sigma }} ight)}^2}} ight] cdot zeta - exp left( {gamma t} ight) cdot {q^sigma } cdot {xi ^sigma } + &qquadexp left( {gamma t} ight) cdot {}_a^CD_{Delta ,t}^alpha qleft( {{}_a^CD_{Delta ,t}^alpha {xi} - alpha cdot {zeta ^Delta } cdot {}_a^CD_{Delta ,t}^alpha q} ight) + &qquadfrac{1}{2}exp left( {gamma t} ight) cdot left[ {{{left( {{}_a^CD_{Delta ,t}^alpha q} ight)}^2} - {{left( {{q^sigma }} ight)}^2}} ight] cdot {zeta ^Delta } = 0 [-12pt]end{split} $$ | (93) |
方程(93)有解
$$ zeta = 1,{kern 4pt} xi = - frac{gamma }{2}q $$ | (94) |
由定理2, 得到守恒量
$$ begin{split} I =&int_a^t {frac{{gamma }}{2}exp left( {gamma tau} ight) cdot left[ {{{left( {{}_a^CD_{Delta ,t}^alpha q left(tau ight)} ight)}^2} - {{left( {{q^sigma }left(tau ight)} ight)}^2}} ight]} Delta tau-&{frac{{gamma q}}{2}}cdot{}_tI_{Delta ,b}^{1 - alpha }left[ {exp left( {gamma t} ight) {{}_a^CD_{Delta ,t}^alpha q} } ight] end{split} $$ | (95) |
令
$$ begin{split}{I^Delta } = &frac{gamma }{2}exp left( {gamma t} ight) cdot left[ {{{left( {_a^CD_{Delta ,t}^alpha q} ight)}^2} - {{left( {{q^sigma }} ight)}^2}} ight] - exp left( gamma t ight) cdot & {q^sigma } cdot {xi ^sigma } + exp left( gamma t ight) cdot _a^CD_{Delta ,t}^alpha q cdot _a^CD_{Delta ,t}^alpha xi = 0 end{split} $$ | (96) |
由此可证明式(95)是一守恒量. 若
$$ - exp left( {gamma t} ight) cdot {q^sigma } = {D_Delta }left[ {exp left( {gamma t} ight) cdot {q^Delta }} ight] $$ | (97) |
其守恒量为
$$ begin{split} I = & int_a^t {frac{gamma }{2}exp left( {gamma tau } ight) cdot left[ {{{left( {{q^Delta }left( tau ight)} ight)}^2} - {{left( {{q^sigma }left( tau ight)} ight)}^2}} ight]} Delta tau - &frac{{gamma q}}{2} cdot exp left( {gamma t} ight) cdot {q^Delta } end{split} $$ | (98) |
在上述给出的初始条件下, 当
ight] $
ight] $
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/7//21-108-4.jpg'"
class="figure_img
figure_type2 ccc " id="Figure4" />
图
4
Figure
4.
Simulation of
下载:
全尺寸图片
幻灯片
6.
结论
将分数阶理论和时间尺度理论应用到动力学问题的研究中, 建立的分数阶时间尺度模型更具有广泛的应用性、更切合实际问题. 结合分数阶微积分和时间尺度微积分, 我们研究了Caputo
分数阶时间尺度Noether定理为求解复杂系统的方程提供了一种新方法, 当然它还需要被进一步地研究和完善. 在今后的工作中, 还可考虑以下几个问题.
(1) 研究如何将该方法进一步拓展到非完整系统和Birkhoff系统或其他复杂动力学系统.
(2) 本工作只研究了Caputo型分数阶导数和
(3) 在实际问题中, 需要讨论分数阶时间尺度模型中Noether守恒量的物理意义.
(4) 值得注意的是, 由于分数阶导数具有记忆性, 一般算法并不适用于分数阶微积分, 算例仅根据分数阶时间尺度积分和导数的定义进行计算的. 分数阶时间尺度的保结构算法是一个新的、艰巨的领域, 将是我们今后的主要工作.