AN IMPROVED EXPERIMENT FOR ELECTROMAGNETIC WAVE TRANSMISSION IN SHOCK TUBE1)
XiongZhuang*,?, ZhangYongyong*,?, WangSu*,?,2),, LiJinping*, ChenHong*,?, FanBingcheng*, CuiJiping* *State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China?School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 中图分类号:O354.7,O53 文献标识码:A
关键词:激波管;等离子体;Langmuir 静电探针;微波透射诊断 Abstract In the study of the transmission mechanism of electromagnetic wave in plasma in $\varPhi $800 mm high temperature and low density shock tube in the Institute of Mechanics, CAS, under conditions of low density and strong shock, the experimental time at region 2 behind shock is significantly reduced due to the non-equilibrium processes such as gas dissociation and ionization. At the same time, the boundary layer effect leads to both the attenuation of the shock wave and the acceleration of the contact surface towards the shock front. Therefore, the experimental time at region 2 will be further reduced. These two effects lead to the reduction of the experimental observation time and the non-equilibrium state of test gas at region 2, resulting in the instability of data observation and the difficulty of data analysis. A mixture of argon and air is used to replace the pure air as the experimental test gas in $\varPhi $800 mm shock tube. Since argon does not dissociate and is difficult to ionize, the compression ratio of shock is significantly reduced, thereby the test time and the gas length at region 2 are largely increased. The electron densities behind shock were measured with both the Langmuir electrostatic probe and the microwave transmission attenuation method. Meanwhile, the test times at region 2 were measured with the Langmuir probe. The results show that the electron densities in the mixtures of argon and air are in the same order of 10$^{13 }$cm$^{ - 3}$ as in the pure air. Under the same electron density and collision frequency conditions, the test times and the gas lengths at region 2 in two mixtures of 90%Ar+10%Air and 95%Ar+5%Air are about 5-10 times than those in the pure air. The test times at region 2 are about 300$\sim$800 $\mu $s, and the gas lengths at region 2 are about 1-1.5 meter. In electromagnetic wave transmission experiments in $\varPhi $800 mm shock tube by using the argon and air mixture as the test gas, the results are more consistent with the theoretical prediction than those in the pure air.
实验中改变Ar+Air混合气体初始压力、激波马赫数和混合气气体组成,采用探针测量激波后2区气体电子密度,同时也测量激波后2区气体的实验时间和长度. 图4为两种实验组成气体激波后2区实验时间随马赫数 的变化.图中显示,随着激波马赫数增加,激波后2区实验时间逐渐减小;实验气体中空气比例增加,2区实验时间减小;本文实验中2区实验时间约为0.3$\sim $0.8 ms. 显示原图|下载原图ZIP|生成PPT 图4激波后2区实验时间随激波马赫数变化 -->Fig.4Variation of the test time at region 2 behind shock with Mach number -->
利用探针测量2区实验时间并计算出2区气体速度,即可得出2区气体长度.图5为实验气体组成为90%Ar+10%Air时,探针测量2区气 体长度结果. 本文实验中2区气体长度约为1$\sim$1.5 m,相比较纯Air条件下的2区气体长度增加了5$\sim $10倍. 显示原图|下载原图ZIP|生成PPT 图52区气体长度随激波马赫数变化 -->Fig.5Variation of the gas length at region 2 with Mach number -->
2.2 激波后2区电子密度
实验中探针测量激波波后2区电子密度结果如图6所示. 在电磁波频率27GHz,采用微波诊断方法测量电子密度结果如图7所示.图6和图7都显示,激波后电子密度随激波马赫数升高而增大,逐渐趋于 一定值.波后电子密度随气体初始压力升高而增加,本实验状态下波后电子密度约为10$^{12}\sim $10$^{13 }$ cm$^{ - 3}$量级.Center[30]在研究95%Ar+5%Air混合气电离特性的激波管实验中,在$P_{1}=0.2 $torr时探针测量波后电子密度约10$^{12 }$cm$^{ - 3}$量级.本文通过改变混合气初始压力、混合气组成和激波强度,获得了10$^{13 }$ cm$^{ - 3}$电子密度,达到了与纯Air电离度相同的电子密度量级. 显示原图|下载原图ZIP|生成PPT 图6Langmuir探针测量电子密度随激波马赫数变化 -->Fig.6Variation of electron density measured by Langmuir probe with Mach number -->
显示原图|下载原图ZIP|生成PPT 图7微波透射测量电子密度随激波马赫数变化 -->Fig.7Variation of electron density measured by microwave transmission with Mach number -->
2.3 静电探针与微波透射测量电子密度比较
实验气体组成为90%Ar+10%Air, Langmuir静电探针与微波透射两种测量方法获得的电子密度结果对比如图8所示. 显示原图|下载原图ZIP|生成PPT 图8探针和微波方法测量电子密度结果比较 -->Fig.8Comparison of electron densities measured by the probe and microwave methods -->
在中科院力学所$\varPhi $ 800 mm高温低密度激波管中进行电磁波传输实验时,采用在大量惰性气体Ar中掺入少量Air的混合气体作为激波管实验介质气体,利用Ar不解离和难电离特性,减小强激波前后压缩比,增加激波后2区气体长度和实验时间,同时混合气中大量Ar有利于Air更快达到电离平衡. 静电探针和微波透射测量显示,在Ar+Air混合气中激波后2区电子密度可达10$^{13}$cm$^{ - 3}$量级. 在Ar+Air混合气中,能够获得与纯Air相同的电子密度,但碰撞频率小于纯Air. 在与纯Air作为实验介质气体相同的电子密度和碰撞频率条件下,在Ar+Air混合气中激波后2区实验时间和长度约为在纯Air中的5$\sim $10倍,其中2区实验时间为0.3 $\sim $0.8 ms,2区气体长度1$\sim $1.5 m. 在Ar+Air介质气体中,激波管传输实验获得了比在纯Air介质中与理论预测更一致的结果. The authors have declared that no competing interests exist.
AndersonJD.Hypersonic and High Temperature Gas Dynamics. New York: McGraw-Hill Book Company, 1989 [本文引用: 1]
[2]
DunnMG, KangSW.Theoretical and experimental studies of reentry plasmas. NASA-CR2232
[3]
HartunianRH, StewartGE, FergasonSD.Cause and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicle. ATR-20075309
[4]
IamespR, RybakJ, ChurchillW.Progress in reentry communications . IEEE Transaction on Aerospace and Electronic Systems, 1971, 7(1): 879-894
[5]
刘铁军. 国外再入通讯中断研究重要文献集 .王柏懿译.北京:航天工业部预研局, 1983
(LiuTiejun.Important Literature on Reentry Communication Interruption. Wang Baiyi,Transl . Beijing: Institute of Aerospace Industry, 1983 (in Chinese))
[6]
吴承康, 卞荫贵.再入通讯可行途径研究 //乐嘉陵主编, 空气动力学获奖成果汇编. 1991
(WuChengkang, BianYinggui.A study of possible approaches to reentry communications //Le Jialing, ed. Compilation of Aerodynamics Award-winning Results, 1991 (in Chinese))
[7]
乐嘉陵. 再入物理 . 北京:国防工业出版社, 2005
(LeJialing.Reentry into Physics. Beijing: National Defense Industry Press, 2005 (in Chinese))
[8]
KimM, KeidarM, BoydID, et al.Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma . Journal of Spacecraft & Rockets, 2008, 45(6): 1223-1229
[9]
KeidarM, KimM, BoydI.Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights . Journal of Spacecraft & Rockets, 2008, 45(2): 445-453 [本文引用: 1]
[10]
BoyerDW, TournyanKJ, RussoAJ.Experimental and numerical studies of flush-mounted electrostatic probes in hypersonic ionized flows. AIAA-72-0104, 1972 [本文引用: 1]
[11]
RussoAJ, TournyanKJ.Experimental and numerical studies of flush electrostatic probes in hypersonic ionized flows. II - Theory . AIAA Journal, 2015, 10(12): 1675-1678 [本文引用: 1]
[12]
ChadwickKM,BoyerDW,AndreSN.Plasma and flowfield induced effects on the re-entry vehicles for L-band near-broadside aspect angles. ADA317594, 1996 [本文引用: 1]
[13]
DestlerWW, DegrangeJE, FleischmannHH, et al.Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary . Journal of Applied Physics, 1991, 69(9): 6313-6318 [本文引用: 1]
(YuanZhongcai, ShiJiaming, WangJiachun.Experimental study on the interaction between plasma and microwave in atmospheric solid combustion .Intense Laser and Particle Beam, 2005, 17(5): 707-710 (in Chinese)) [本文引用: 1]
(WangBaiyi.Iridium wire electrostatic probe and its application in high temperature wind tunnel . Acta Mechanica Sinica, 1982, 18(1): 100-106 (in Chinese))
(CaoJinxiang, ZhaoHongbo, LinYijun, et al.Application of multi-channel scanning probe system in arc wind tunnel . Journal of Astronautics, 1999, 20(1): 83-87 (in Chinese))
[17]
ZhuNY, LiXF, HuangLS, et al.An investigation of electromagnetic wave propagation in plasma by shock tube . Acta Mechanica Sinica, 2004, 20(2): 212-218 [本文引用: 1]
(ZhengLing, ZhaoQing, LuoXiangang, et al.Theory and experimental study of electromagnetic wave transmission characteristics in plasma . Acta Physics Sinica, 2012, 61(15): 343-349 (in Chinese)) [本文引用: 1]
(MaPing, ZengXuejun, ShiAnhua, et al.Experimental study on electromagnetic wave transmission characteristics in high-temperature plasma gas . Experimental Fluid Mechanics, 2010, 24(5): 51-56 (in Chinese)) [本文引用: 1]
(YuZhefeng, MaPing, ZhangZhicheng, et al.Study of microwave transmission effect in thin plasma . Experimental Fluid Mechanics, 2013, 27(2): 60-64 (in Chinese)) [本文引用: 1]
[21]
ZhuNY, HuangLS, WuB, et al.Transmission characteristics of EM wave in a finite thickness plasma . Acta Mechanica Sinica, 2013, 29(1): 189-195 [本文引用: 2]
(WangSu, CuiJiping, HeYuzhong, et al.Shock tube study of sodium ion and electron non-equilibrium combined ionization dynamics . Acta Mechanica Sinica, 2001, 33: 472-477 (in Chinese))
[25]
WangS, CuiJP, FanBC, et al.Measurement of electron density profile behind strong shock waves with a Langmuir probe //Proceedings of the 24th International Symposium on Shock Waves, Beijing, July, 2004: 82 [本文引用: 3]
(CuiJiping, HeYuzhong, FanBingcheng.Determination of slow electron average scattering cross section by magnetic probe . Nuclear Fusion and Plasma Physics, 1984, 4(1): 24 (in Chinese)) [本文引用: 1]