PRELIMINARY EXPERIMENTAL STUDY ON THE LIQUID METAL FILM FLOW RELATED WITH FUSION NUCLEAR 1)
NiMingjiu*,?,2),, YangJuancheng?, RenDongwei*, LiuBaiqi*, QiTianyu*, HuJiansheng**, LiJiangang** *School of Engineering of Science, University of Chinese Academy of Sciences, Beijing 100049, China?State Key Laboratory for Strength and Vibration of Mechanic Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 100190, China**Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 中图分类号:O361.3 文献标识码:A
关键词:液态金属;液膜流动;表面波;磁约束核聚变;磁流体力学 Abstract Liquid lithium film flow is a superior choice for the plasma facing components in magnetic confinement fusion due to its advantages of removing impurities, protecting the solid surface directly against the plasma. However, it is a great challenge to overcome the magnetohydrodynamic effect on film flow and to realize the uniform spreading of film flow on a solid plate under the influence of an intense magnetic field in the nuclear fusion plant. In the present paper, based on the liquid GaInSn loop and the liquid lithium loop, we carry out experiments of liquid metal film flowing on the inclined electric conductive plate with the applied transverse magnetic field. The visualization method is adopted to observe the surface structures of film flow under different experimental conditions. By comparing the experimental results of liquid GaInSn and liquid lithium, we find that the characteristics of surface waves of liquid metal are the same as that of normal liquid without a magnetic field, namely the surface waves become chaotic with the increase of Reynolds number, while the characteristics change greatly under the influence of transverse magnetic field. The surface waves of liquid GaInSn film flow become quasi two-dimensional and parallel to the magnetic lines, while the liquid lithium film flow is nearly stagnated at a fixed position, indicating the existence of a strong magnetohydrodynamic resistance. Moreover, the stagnation point moves far away from the film generator at a larger Reynolds number. Finally, by analyzing the force loaded on the film, we make a detailed explanation of the phenomenon that the magnetohydrodynamic effect is much stronger on the liquid lithium flow than on the liquid GaInSn flow.
Keywords:liquid metal;film flow;surface waves;magnetic confinement fusion;magnetohydrodynamic -->0 PDF (7279KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 倪明玖, 阳倦成, 任东伟, 刘佰奇, 齐天煜, 胡建生, 李建刚. 聚变堆相关的液态金属膜流初步实验研究1)[J]. 力学学报, 2018, 50(6): 1379-1386 https://doi.org/10.6052/0459-1879-18-367 NiMingjiu, YangJuancheng, RenDongwei, LiuBaiqi, QiTianyu, HuJiansheng, LiJiangang. PRELIMINARY EXPERIMENTAL STUDY ON THE LIQUID METAL FILM FLOW RELATED WITH FUSION NUCLEAR 1)[J]. Acta Mechanica Sinica, 2018, 50(6): 1379-1386 https://doi.org/10.6052/0459-1879-18-367
2.1.1 镓铟锡膜流的铺展特性 图5给出了不同流动雷诺数, 采用高速相机拍摄的GaInSn膜流流动瞬时图片. 图中流动方向为自上而下. 由于相 机与被拍摄的液膜表面呈一定的夹角(约30$^{\circ}$), 获取的膜流表面图像为梯形. 从图中可以看出, 当流动{\it Re}较小时液膜表面呈现与展向近似平行的波纹结构(图5(a), $Re = 1553.6)$,而随着Re增大, 相机所拍摄的图片中黑色区域(波谷)和白色区域(波峰)分布变得更为随机, 表明 液膜表面波动更为复杂(图5(d), $ Re = 7767.8)$, 呈现三维表面波动状态. 显示原图|下载原图ZIP|生成PPT 图5不同Re数工况下的GaInSn膜流特性 -->Fig.5Flow characteristics of GaInSn film with different Re -->
2.1.2 镓铟锡膜流的磁流体力学效应 当金属液膜流动引入与流动方向垂直的磁场时,导电流体运动时会产生与运动方向相反的 洛伦兹力作用,进而对膜流产生影响. 图6给出了GaInSn膜流在不锈钢底板上的流动形态随磁场强度(对应无量纲哈特曼数)的变化. 显示原图|下载原图ZIP|生成PPT 图6不同展向磁场强度影响下的GaInSn膜流特性$( Re = 4660.7)$ -->Fig.6Flow characteristics of GaInSn film with different strength of spanwise magnetic field $( Re = 4660.7)$ -->
锂膜流的表面特性见图8和图9所示. 受限于实验段支架结构,我们无法获得与GaInSn膜 流实验一样的整个膜流表面特征,只能通过将相机垂直液膜表面拍摄初始段的膜流特征(从液膜生成结构出来后的一段膜流). 显示原图|下载原图ZIP|生成PPT 图8不同Re数工况下的锂膜流特性 -->Fig.8Flow characteristics of Lithium film with different Re -->
显示原图|下载原图ZIP|生成PPT 图9不同展向磁场强度影响下的锂膜流特性 -->Fig.9Flow characteristics of lithium film flow with different strength of spanwise magnetic field -->
LiJ, LuoG, DingR, et al.Plasma facing components for the Experimental Advanced Superconducting Tokamak and CFETR . , 2014, 2014(T159): 014001 [本文引用: 1]
[2]
AbdouM, MorleyNB, SmolentsevS, et al.Blanket/first wall challenges and required R & D on the pathway to DEMO . , 2015, 100: 2-43 [本文引用: 1]
[3]
MoirRW.Rotating liquid blanket for a toroidal fusion reactor . , 1987, 5(3): 269-272 [本文引用: 1]
[4]
NarulaM, AbdouMA, YingA, et al.Exploring liquid metal plasma facing component (PFC) concepts---Liquid metal film flow behavior under fusion relevant magnetic fields . , 2006, 81(8-14): 1543-1548 [本文引用: 2]
[5]
HirookaY, ZushiH, BhattacharyayR, et al.Active particle control in the CPD compact spherical tokamak by a lithium-gettered rotating drum limiter . , 2009, 390: 502-506 [本文引用: 1]
[6]
BhattacharyayR, ZushiH, HirookaY, et al.Study on wall recycling behaviour in CPD spherical tokamak . , 2008, 83(7): 1114-1119 [本文引用: 1]
(QiuLijian. Beijing: China Science Publishing, 2007 (in Chinese)) [本文引用: 1]
[16]
YingAY, AbdouMA, MorleyN, et al.Exploratory studies of flowing liquid metal divertor options for fusion-relevant magnetic fields in the MTOR facility . , 2004, 72(1): 35-62 [本文引用: 1]
[17]
MorleyNB, GaizerAA, TillackMS, et al.Initial liquid metal magnetohydrodynamic thin film flow experiments in the McGA-loop facility at UCLA . , 1995, 27(95): 725-730
[18]
NarulaM, AbdouMA, YingAY, et al.Study of liquid metal film flow characteristics under fusion relevant magnetic field conditions//20th IEEE/NPSS Symposium on , 2003: 2-5 [本文引用: 1]
[19]
PlatacisE, FlerovA, KlukinA, et al.Gravitational flow of a thin film of liquid metal in a strong magnetic field . , 2014, 89(12): 2937-2945 [本文引用: 1]
[20]
XuZ, PanC, KangW.Experimental observation and theoretic analysis MHD effects of a liquid metal jet in a gradient magnetic field . , 2004, 46(46): 577-585 [本文引用: 1]
[21]
ZhangX, XuZ, PanC.MHD effect of liquid metal film flows as plasma-facing components . , 2008, 10(6): 685-689
[22]
ZhangX, PanC, XuZ.MHD stability analysis and flow controls of liquid metal free surface film flows as fusion reactor PFCs . , 2016, 18(12): 1204-1214 [本文引用: 1]
(ZhangXiujie, PanChuanjie, XuZengyu.Effects of wettability and magnetic field on the liquid metal free surface film flow state . , 2017, 37(1): 52-57(in Chinese)) [本文引用: 1]
[24]
LiFC, SerizawaA.Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field . , 2004, 70(2): 185-199 [本文引用: 1]
[25]
YangJC, QiTY, NiMJ, et al. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field . , 2016, 109-111: 861-865 [本文引用: 1]
(YangJuancheng, QiTianyu, LiuBaiqi, et al.Experimental study on spreading characteristics of liquid metal film under influence of magnetic field . , 2017(9): 1917-1922(in Chinese))
[27]
YangJC, QiTY, RenDW, et al.Surface waves of liquid metal film flow under the influence of spanwise magnetic field . , 2018, 130: 42-47
[28]
YangJC, QiTY, RenDW, et al.Rearrangement of liquid metal surface waves by a uniform transverse magnetic field . , 2018, 59(11): 165 [本文引用: 1]
[29]
Yoshihashi-SuzukiS, SugiuraH, HoashiE, et al.Overview: Free surface measurement with renewed nozzle of Osaka Li loop . , 2011, 86(9): 2577-2580 [本文引用: 1]
[30]
Yoshihashi-SuzukiS, HoashiE, KanemuraT, et al.Characteristics of surface oscillation on high speed liquid Li jet . , 2012, 87(7-8): 1434-1438 [本文引用: 1]
[31]
OkitaT, MoriokaJ, HoashiE, et al.Study on suppression of free surface fluctuation of liquid Li jet by magnetic field . , 2017, 124: 975-979 [本文引用: 1]
[32]
LiuBQ, YangJC, QiTY, et al.Experimental study on the lithium film flow in the spanwise magnetic field . , 2018, doi: 10.1016/j.fusengdes.2018.03.011 [本文引用: 2]
[33]
LiuT, SenP, KimCJ.Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices . , 2012, 21(2): 443-450 [本文引用: 1]
[34]
MorleyNB, BurrisJ, CadwalladerLC, et al.GaInSn usage in the research laboratory . , 2008, 79(5): 056107 [本文引用: 1]
[35]
Davidson PA.Magnetic damping of jets and vortices . , 1995, 299: 153-186 [本文引用: 1]