HYSTERESIS MECHANICAL MODEL AND EXPERIMENTAL STUDY OF SPRING METAL-NET RUBBER COMBINATION DAMPER1)
ZouGuangping*,2),, ZhangBing*, ChangZhongliang*,3),, LiuSong? *(College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001, China)?(Tianjin Helicopter Research and Development Center,Tianjin 300270, China) 中图分类号:V252.1 文献标识码:A
关键词:金属丝网橡胶;组合减振器;迟滞特性;等效刚度;干摩擦阻尼 Abstract Metal-net rubber is a porous material composed entirely of metal wire woven. Compared with the traditional spiral coiled metal rubber material, the molding technology of metal-net rubber material is improved, which eliminates a large number of manual process interferences in preparation process. The metal-net rubber material has higher mechanization degree, better coincidence and more stable mechanical properties. With the excellent characteristics of bearing capacity, large damping, high temperature resistance, low temperature resistance, aging resistance, oil and corrosion resistance, metal-net rubber material is better than traditional rubber in many ways, which is widely used in aerospace, shipbuilding, military weapons and other military industries. Spring metal-net rubber combination damper has designable stiffness and high bearing capacity. Because of its complex nonlinear hysteresis characteristics, the constitutive model of related materials is difficult to describe its mechanical properties accurately. Based on the static hysteresis mechanical performance experiment of spring metal-net rubber combination damper, combined with the hysteresis characteristics of dry friction damping, a theoretical modeling model of hysteresis mechanical properties is proposed. According to the characteristics of restoring force-displacement curve of damper hysteresis experiment, the hysteresis curve is decomposed into elastic recovery force and dry friction damping force by parameter separation method. The equivalent stiffness and dry friction damping coefficient are solved respectively by modeling to establish the theoretical model of the combination damper. By comparing with the experimental results, the error analysis is carried out to verify the accuracy of the theoretical model.
Keywords:metal-net rubber;combination damper;hysteresis characteristics;equivalent stiffness;dry friction damping -->0 PDF (4081KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 邹广平, 张冰, 唱忠良, 刘松. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究1)[J]. 力学学报, 2018, 50(5): 1125-1134 https://doi.org/10.6052/0459-1879-18-165 ZouGuangping, ZhangBing, ChangZhongliang, LiuSong. HYSTERESIS MECHANICAL MODEL AND EXPERIMENTAL STUDY OF SPRING METAL-NET RUBBER COMBINATION DAMPER1)[J]. Acta Mechanica Sinica, 2018, 50(5): 1125-1134 https://doi.org/10.6052/0459-1879-18-165
通过控制变量法分别对不同相对密度试件、预紧量、加载幅值及弹簧刚度的组合金属丝网橡胶减振器进行静态迟滞力学性能实验,不同实验组别的编号及组合减振器参数如表2所示. Table 2 表2 表2不同实验组编号及减振器参数 Table 2Number of different experiment groups and damper parameters
A1
0.16
4
1.5
0
A2
0.18
4
1.5
0
A3
0.20
4
1.5
0
A4
0.22
4
1.5
0
B1
0.18
4
1.0
0
B2
0.18
4
2.0
0
C1
0.18
5
1.5
44.25
C2
0.18
5
1.5
103.55
新窗口打开 静态迟滞实验采用万能材料实验机进行加载,使用特定设计的加载转接头及固支,使其可进行拉压加载并记录数据,实验装置见图6. 加载速度为0.5\,mm/min,令减振器支撑轴轴向为加载方向.在实验开始记录数据前按照实验载荷对组合金属丝网橡胶减振器进行3次以上的反复加卸载直至恢复力$\!$-$\!$-$\!$位移曲线重合,减小实验误差. 实验得到恢复 力$\!$-$\!$-$\!$位移曲线如图7所示,图8为实验迟滞曲线分解图. 因此可计算各实验组等效刚度及干摩擦阻尼系数理论值并与实验测得参数数值进行对比如表3及表4所示.由表中数据绘制理论与实验组合金属丝网橡胶减振器静态迟滞恢复力$\!$-$\!$-$\!$位移曲线对比图像如 图9. Table 3 表3 表3等效刚度理论值与实验值对比结果 Table 3Contrast results between theoretical and experimental values of equivalent stiffness
Test group
Equivalent stiffness theoretical value/ (kNmm-1)
Equivalent stiffness test value/ (kNmm-1)
Error/ %
A1
0.0810
0.085 9
5.72
A2
0.1078
0.0995
8.30
A3
0.140 6
0.1441
2.41
A4
0.179 8
0.1908
6.11
B1
0.1078
0.1056
2.10
B2
0.1078
0.0945
14.0
C1
0.1963
0.2106
6.79
C2
0.3149
0.306 7
2.68
新窗口打开 Table 4 表4 表4干摩擦阻尼系数理论值与实验值对比结果 Table 4Contrast results between theoretical and experimental values of dry friction damping coefficient
Test group
Theoretical value of dry friction damping coefficient
Test value of dry friction damping coefficient
Error/ %
A1
0.163 6
0.1638
0.12
A2
0.1840
0.163 7
12.4
A3
0.2044
0.2050
0.29
A4
0.224 9
0.241 5
6.87
B1
0.1840
0.1652
11.4
B2
0.1840
0.1678
9.65
C1
0.1958
0.2068
5.31
C2
0.195 8
0.2226
12.0
新窗口打开 显示原图|下载原图ZIP|生成PPT 图6减振器静态迟滞特性实验装置图 -->Fig. 6Experiment device for static hysteresis characteristic of shock absorber -->
显示原图|下载原图ZIP|生成PPT 图8迟滞曲线分解图 -->Fig. 8Decomposing diagram of hysteresis curve -->
显示原图|下载原图ZIP|生成PPT 图9组合金属丝网橡胶减振器静态迟滞恢复力$\!$-$\!$-$\!$位移曲线理论与实验对比 -->Fig.9Theoretical and experimental comparison of resuming force-displacement curves for combined metal-net rubber shock absorbers with static hysteresis -->
(XuZhaodong, XuChao, XuYeshou.Microscopic molecular chain structure model of viscoelastic damper under micro-vibration excitations . , 2016, 48(3): 675-683 (in Chinese))
(LiuJun, ChenLincong, SunJianqiao.The closed-form solution of steady state response of hysteretic system under stochastic excitation . , 2017, 49(3): 685-692 (in Chinese))
(HuZhiping, ZhouHan,WuJiuhui.Thrbulent like quantitative analysis on the sound absorbing characteristics of metal rubber . , 2012, 44(2): 197-204 (in Chinese))
(LiYulong, BaiHongbai,HeZhongbo.Chaotic characteristic of nonlinear metal rubber vibration isolation system . , 2011, 2016, 36(5): 491-497 (in Chinese))
(LiYulong, BaiHongbai,HeZhongbo,et al.Complex response characteristics of a passive metal-rubber vibration isolation system . , 2016, 35(4): 87-92 (in Chinese))
(WuRongping, BaiHongbai,LuChunhong.Influencing factors of compression properties and mesoscopic model of metal rubber . , 2018, 18(2): 66-71 (in Chinese))
(MaYanhong, ZhangQicheng, ZhangDayi, et al.Failure criterion and durability characteristics of metal rubber under static compression load . , 2016, 42(2): 227-235 (in Chinese))
(GaoDi, MaYanhong, HongJie.Influence of compression ratio on microstructure and mechanical behavior of metal rubber . , 2016, 31(3): 575-580 (in Chinese))
(YuHuijie, XuYahui, LiuWenhui.The comparison of common static stiffness theory model of metal rubber . , 2017, 48(11): 11141-11146 (in Chinese))
[15]
ZhangDY, FabrizioS, MaYH, et al.Compression mechanics of nickel-based superalloy metal rubber . , 2013, (580): 305-312
[16]
MaYH, ZhangQC, ZhangDY, et al.The mechanics of shape memory alloy metal rubber . , 2015, (96): 89-100
[17]
ZhangB, LangZQ, BillingsSA, et al.System identification methods dor metal rubber devices . , 2013, 39(1-2): 207-226
[18]
MaYH, LiangZC, WangH, et al.Theoretical and experimental steadystate rotordynamics of an adaptive air film damper with metal rubber . , 2013, 332(22): 5710-5726
(YangKunpeng, FanWenxin, CaoCuncun, et al.Dynamic mechanical modeling and parameter identification of metal-rubber materials . , 2017, 36(12): 1830-1833 (in Chinese))
(ChenYanqiu, GuoBaoting,ZhuZigen.The investigation of the stiffness characteristics and the stress-strain relation of metal rubber . , 2002, 17(4): 416-420 (in Chinese)) [本文引用: 1]
(BaiHongbai, ZhengJian,ZhangPeilin, et al Equivalent linearization approximate method of response computation of a two degree of freedom hysteretic vibration system under sinusoidal excitation . , 2000, 36(11): 90-93 (in Chinese))
(JiangHongyuan, AoHongrui, LiGuixian,et al.Modeling and analysis of dynamic characteristics of metal rubber isolator. , 2004, 19(3): 23-27 (in Chinese))
[26]
ZhangRH, JiangHY, ZhaoKD.Damping characteristics analysis of squeeze film damperwith metal rubber . , 2006, 13(2): 146-150
[27]
MaYH, ZhangQC, ZhangDY, et al.Turning the vibration of a rotor with shape memory alloy metal rubber supports . , 2015, 351(5): 1-16
(LuChunhong, BaiHongbai.Dynamic modeling and parameter identification of metal rubber/rubber composite laminated energy dissipater . , 2007, 26(11): 5-8 (in Chinese))
(CaoFengli, BaiHongbai,RenGuoquan, et al.Research on hysteresis model of restoring force of metal rubber . , 2014, 25(3): 311-314, 320 (in Chinese)) [本文引用: 1]
(LuChengzhuang, LiJingyuan, ZhouBangyang, et al.An experimental study on stiffness characteristics and damping of metal rubber . , 2017, 36(8): 203-208 (in Chinese))
(PengWei, BaiHongbai, ZhengJian, et al.A micromechanics constitutive model of the metal rubber materials based on the radial and axial combined deformation of the microsprings . , 2005, 20(3): 455-462 (in Chinese)) [本文引用: 1]
(ZouGuangping, ChengHezhang, ChangZhongliang, et al.Research on static mechanical properties of metal rubber made of wire mesh . , 2015, 36(3): 332-336 (in Chinese)) [本文引用: 1]
(ZouGuangping, LiuZe, ChengHezhang, et al.Effects of preloading and vibration level on the vibration characteristics of metal rubber damper . , 2016, 34(22):173-177 (in Chinese)) [本文引用: 1]