关键词:种植业;生产要素调控;区域差别化;三阶段DEA;湖北省 Abstract Using three-stage DEA modeling we estimated the real production efficiency of arable land at the county level in Hubei,China. Research shows:By comparing differences among the four regions of Hubei (western mountain region,southern-eastern hill region,Jianghan plain and northern-eastern region), some responding region-differential proposals are put forward for regulating the structure of plant industry production factors. Compared with the results of BBC (first stage),in the third stage the efficiency increases and redundancy declines significantly,verifying that the three-stage DEA model,to a certain extent,can eliminate the influence of external environmental factors and random factors,and can show the real efficiency of one DMU in a degree. There are obvious spatial differences in arable land production efficiency and redundancy of plant production factors. The western mountain region and southern-eastern hill region have high redundancy rates for labor force and it is important to take certain measures to transfer the agricultural labor force to nonagricultural industries. The Jianghan plain and the northern-eastern region have higher redundancy rates for agricultural machines,yet there is a difference between the poor use of agricultural machines and redundant agricultural machine resource inputs and methods to raise the efficiency of agricultural machinery in the Jianghan plain and reduce the amount of agricultural machines in the northern-eastern region are needed. Fertilizer input redundancy has a regularity of spatial distribution. The Jianghan plain and northern-western region should cut down on the amount of chemical fertilizer used. Policy makers should lay down regional-differential policies to improve the structure of planting factors and the efficiency of arable land usage.
Keywords:planting industry;regulation of production factors;region-differential;three-stage DEA modeling;Hubei Province -->0 PDF (11754KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 单玉红, 朱枫, 刘梦娇. 湖北省县际种植业生产要素调控对策研究——基于三阶段DEA模型[J]. , 2017, 39(2): 367-377 https://doi.org/10.18402/resci.2017.02.18 SHANYuhong, ZHUFeng, LIUMengjiao. Structural regulation countermeasures of planting industry production factors for counties in Hubei according to three-stage DEA modeling[J]. 资源科学, 2017, 39(2): 367-377 https://doi.org/10.18402/resci.2017.02.18
1 引言
在自然资源有限的约束条件下,优化生产要素结构以提升生产效率是人类经济发展和生产活动的理论研究和实践探索的永恒目标之一。主体功能区规划框架下,在省域范围内进行耕地生产效率评价并实施区域差别化的种植业生产要素结构调控,既是保障国家粮食安全的需要,也是对土地差别化利用管理政策的响应。文章以湖北省为研究区,进行县际单元的耕地生产效率评价并提出区域差别化的种植业生产要素结构调控对策。 DEA(Data Envelope Analysis)最早由美国运筹学家Charnes、Cooper和Rhodes[1]提出,并由包括魏权龄[2]在内的****进一步发展完善。它利用样本间的线性联合来构造生产前沿面,测度各DMU(Deci-sion Making Units)的相对有效性,并通过测算各无效DMU偏离前沿面的程度,探寻各无效DMU的优化空间。DEA不需要预先知道多投入产出指标之间的具体函数形式和特定的行为假设,可避免主观因素导致的误差[2],因而被广泛用于包括耕地生产效率在内的效率评价研究,其中,CCR、BBC等传统DEA模型的应用更为广泛[3-8]。研究认为中国内陆省际层面上的耕地生产效率存在区域差异,处于生产前沿面上的比例较小,且呈现空间集聚态势[3-8],需要实施区域差别化的生产要素调控对策[7,8],其核心准则是要准确还原耕地的真实生产效率。但CCR、BBC等模型是将各DMU置于假定的无差外部环境下进行相对效率评价,这一假设下,由于外部环境较差的DMU到生产前沿面的真实距离被拉伸,各DMU的效率表现会被扭曲,从而造成生产要素结构调整决策的偏差;而三阶段DEA模型能较好地修正外生环境变量对效率评估的偏差,获取能更为真实反映生产要素结构不合理性的效率值[9],其有效性在能源利用、农业生产等研究领域也已得到验证[10-14]。 因此,论文选择三阶段DEA模型评价湖北省耕地生产效率并测度其生产要素结构的合理性。根据区域差异,将研究区划分为鄂北山区、江汉平原、鄂东南丘陵以及鄂西山区,分区域对比投入要素的不足/冗余情况,提出区域差别化的种植业生产要素结构效率调控对策。
第一阶段的初始BBC模型给出的各DMU的相对效率值如图1所示。使用自然断点法将78个DMU分别划分前沿面(DMU=1)、高效率区(0.8 DMU<1)、中效率区(0.6 DMU<0.8)和低效率区(DMU<0.6)四个等级区。结果显示15个位于前沿面和高效率区的DMU主要为市辖区及其近郊区域;63个中低效率区的DMU主要位于鄂东南丘陵地区和鄂西山区,这与相关研究中农业及经济发展水平越高,DEA的相对效率值越高的结论是一致的[8]。 显示原图|下载原图ZIP|生成PPT 图12014年湖北省各DMU的第一阶段相对效率值及其空间分异 -->Figure 1Efficiency of the DMU set based on the original BBC model and it's spatial differentiation in Hubei Province in 2014 -->
二阶段测度结果表明:4个投入要素会显著影响到耕地生产效率表现,因此按照公式(4)调整初始投入要素数值,从而将所有的DMU置于同等的经济环境和运气环境上。将调整后的投入值与原始的产出值再次代入BBC模型进行效率评价,结果如图2所示。相对于第一阶段的初始DEA评价而言,各DMU的效率值均有较大提升,其中处于前沿面的决策单元的比例也从第一阶段DEA的9%(7个)上升至22%(17个)。 显示原图|下载原图ZIP|生成PPT 图22014年湖北省各DMU的第三阶段的相对效率值及其空间分异 -->Figure 2Efficiency of the DMU set based on the third BBC model and it's spatial differentiation in Hubei Province in 2014 -->
显示原图|下载原图ZIP|生成PPT 图32014年湖北省各DMU的四类投入要素的冗余率及其空间分异(第一阶段) -->Figure 3Redundancy rates and the spatial differentiation of the four input elements’ based on the original BBC model in Hubei Province in 2014 -->
依据“固定产出最小化投入”的优化原则,给出第一阶段(图3)和第三阶段(图4,见第374页)中各无效DMU的投入要素冗余率。 显示原图|下载原图ZIP|生成PPT 图42014年湖北省各DMU的四类投入要素的冗余率及其空间分异(第三阶段) -->Figure 4Redundancy rates and the spatial differentiation of the four input elements’ based on the third BBC model in Hubei Province in 2014 -->
(1)湖北省是粮食主产区,也是国土资源部确立的全国首个国土资源节约集约示范省。区域差别化的种植业生产要素结构调控对策有助于农业生产资源配置的空间均衡和耕地生产总量的提升,实践了粮食安全和耕地利用的“耕地面积总量的动态平衡”到“耕地生产总量的动态平衡”这一指导原则转换。 (2)三阶段DEA测算结果认为:鄂西山区和鄂东南丘陵地区是农业劳动力调控的重点区域;农业机械的投入需要视区域条件而定;化肥投入冗余仅在部分县域过高;大部分地区的耕地复种次数和利用强度均较适度。 (3)从方法来说,三阶段DEA模型可在一定程度上纠正外部环境和随机因素造成的效率表现偏差,但是也有可能产生变量遗漏和变量测度偏差,因此,需谨慎对待非效率估计值,这也是本文后续的研究方向。 The authors have declared that no competing interests exist.
[Ding MJ,ChenQ,Xin LJ,et al.Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013 [J]. ,2015,70(7):1080-1090.] [本文引用: 1]
[ZhaoL,GongJ,Wang WT,et al.Evaluation of intensive cultivated land utilization based on grey probability model-a case study in Hubei Province [J]. ,2014,21(4):263-267.] [本文引用: 1]
[Zhang RT,Jiao HF.Spatial-temporal pattern differentiation and its mechanism analysis of using efficiency for provincial cultivated land in China [J]. ,2015,31(2):277-287.] [本文引用: 2]
[Liu YH,WuP.Agricultural cultivated land total factor productivity of China and its influencing factors during the period of transition [J]. ,2011,(7):114-127.]
[Li MW,FuQ,Zhang JS,et al.A DEA-based research on the farmland utilization efficiency and its influencing factors of Jilin Province [J]. ,2013,41(3):3682-3684.]
[YangS,Yu WH,Li SP.Study on the non-effective improvement of productive efficiency of cultivated land in Shaanxi Province based on DEA [J]. ,2012,27(10):62-68.]
[Wang LJ,LiH.Cultivated land use efficiency and the regional characteristics of its influencing factors in China:By using a panel data of 281 prefectural cities and the stochastic frontier production function [J]. ,2014,33(11):1995-2004.] [本文引用: 1]
[Liu XP,MengM,Luo QS.Evaluation of agricultural land use efficiency in Xinjiang based on data envelopment analysis [J]. ,2008,22(1):40-43.] [本文引用: 4]
[9]
Fried HO,LovellC,SchmidtS,et al.Accounting for environmental effects and statistical noise in data envelopment analysis [J]. ,2002,17(1):157-174. [本文引用: 1]
[Guo JH,NiM,Li BY.Research on agricultural production efficiency based on three-stage DEA model [J]. ,2010,(12):27-38.] [本文引用: 1]
[11]
邓姗姗,张莹莹,陈蕾. 中国省际可实现节能减排潜力测度基于三阶段 DEA 模型的研究 [J]. ,2016,(1):44-58.
[Deng SS,Zhang YY,ChenL.The potential measures of energy saving and emission reduction in China-research based on the three stage DEA model [J]. ,2016,(1):44-58.]
[Liu ZF,Wang CH.Organic agricultural production efficiency based on a three-stage DEA model:A case study of Yang County,Shaanxi Province [J]. ,2015,25(7):105-112.]
[Long KS,Chen LG,Zhan XL.Comparative analysis of input-output efficiency among different land use types in Jiangsu:A case of cultivated land and industry land [J]. ,2008,18(5):174-178.]
[ General Office of Hubei Provincial Government.Hubei Standard of Unified Arable Land's Annual Output Value and Compre-hensive Land Price[EB/OL].(2014-03-13)[2016-04-15]. URL [本文引用: 1]