一般认为俯冲板片的拖拽力(slab pull)是板块运动的主要驱动力,但洋中脊的推力(ridge push)也有一定的贡献,当二者达到稳态时板块运动的速率基本保持稳定,但板块在运动时速度经常会发生突然变化,其动力学机制仍不清楚。晚白垩世以来印度大陆持续向北漂移,与亚洲大陆在新生代早期发生碰撞,造成了喜马拉雅和青藏高原的隆升。印度板块在向北漂移过程中运动速率发生了多次突变,最显著的两次发生在约70 Ma和约52 Ma,前者漂移速率从约8 cm/yr 增加到 >16 cm/yr,后者从 >15 cm/yr 降低到 <8 cm/yr(图1)。印度板块这两次运动速率突变的动力学背景及其与青藏高原构造演化之间的关系,目前仍存在很大争论。对于约70 Ma的增速,前人提出了德干地幔柱喷发所造成的印度岩石圈去根作用或侧向推力、双向俯冲、沉积岩俯冲润滑等多种模型。而对于约52 Ma的减速,早期许多****认为其代表了印度大陆与亚洲大陆的初始碰撞,或者由于高原隆升、板片断裂等造成的应力增加。精确限定晚白垩世-古近纪青藏高原的变形时间可以有效区分这些模型,并有助于理解印度与亚洲大陆的碰撞过程。青藏高原东部贡觉盆地长尺度、高分辨率的连续沉积序列及其沉积速率变化为研究上述问题提供了良好的地质记录。
图1 (a)75~40 Ma印度-亚洲汇聚速率(van Hinsbergen et al., 2011)(红线和黑线分别代表沿东、西喜马拉雅构造结的汇聚速率);(b)青藏高原构造地质简图,蓝色多边形指示贡觉盆地位置
沉积盆地是记录造山带构造变形、隆升-剥蚀过程和古气候变化的良好载体。精准限定盆地沉积物的年龄是利用沉积盆地进行构造-气候关系研究的前提。此外,如何有效区分构造和气候变化的沉积学信息,是利用盆地沉积物进行构造变动研究的最大难题。为准确限定青藏高原构造变形的时间及过程,中科院地质与地球物理研究所岩石圈演化国家重点实验室博士后李仕虎(已出站,受英国皇家学会Newton国际奖学金的资助现在英国Lancaster大学进行合作研究)与合作导师邓成龙研究员、朱日祥研究员,以及荷兰Utrecht大学Douwe van Hinsbergen教授、英国Lancaster大学Yani Najman教授、中国地震局地质研究所刘静研究员对贡觉盆地进行了详细的磁性地层学和磁组构研究,主要认识如下:
(1) 贡觉盆地构造-沉积特征表现为不对称的向斜,表明其为受逆冲断层控制的同构造沉积盆地。磁性地层学结果显示贡觉盆地沉积序列的年龄为69~41.5 Ma(图2)。
(2) 贡觉盆地经历了两阶段的快速沉积(69~64 Ma和52~48 Ma)和两阶段的慢速沉积(64~52 Ma和48~41 Ma)(图3a)。值得注意的是,贡觉盆地沉积速率的变化特征与羌塘中部可可西里盆地沉积速率的变化基本一致(图3a),显示了区域内相似的构造-沉积动力学背景和构造变形特征。
(3) 贡觉盆地经历了多阶段的旋转过程,其中69~67 Ma发生了约10°的逆时针旋转,52~48 Ma发生了约30°的顺时针旋转(图3c)。这一旋转变化型式与沉积速率的变化近似同期。
(4) 基于贡觉盆地的构造背景及其沉积速率与构造旋转基本同期的特征,他们认为贡觉盆地沉积速率的变化主要受控于构造而非气候,提出青藏高原东部在约70Ma和约52Ma经历了两期快速的地壳缩短变形。这两期构造变形不仅与青藏高原其他地区的变形近同期,而且与印度-亚洲汇聚速率的变化一致(图3d),表明青藏高原的脉冲式变形与印度板块的运动速率相关。
(5) 青藏高原脉冲式变形与印度板块运动速率的耦合性变化表明,在印度板块运动速率变化时,印度与亚洲板块俯冲带的应力增大,暗示德干地幔柱的侧向推力和板片断离分别是印度板块运动约70 Ma增速和约52 Ma减速的最可能原因。此外,目前基于物源证据所提出的印度与亚洲大陆初始碰撞的时间约为60 Ma,而盆地沉积记录显示青藏高原在这一时间并未发生明显构造变形(如沉积速率增加或构造旋转),表明该初始碰撞很可能代表了“软碰撞”或者两期碰撞的早期阶段。
图2 贡觉盆地沉积序列的磁性地层学结果。剖面上部约43 Ma的年龄为贡觉盆地西北部地层中火山灰层的U-Pb(Tang et al., 2017)和40Ar/39Ar(Studnicki-Gizbert et al., 2008)年龄
图3 贡觉盆地(蓝线,Li et al., 2020)和可可西里盆地(红线,Jin et al., 2018)沉积速率(a)、深海氧同位素(b;Zachos et al., 2008)、古地磁偏角(c)和印度-亚洲汇聚速率(d;van Hinsbergen et al., 2011)随时间变化的对应关系
磁组构可以灵敏地记录岩石/沉积物所经历的应力状态变化,是区分构造和气候信号的有效工具。在上述磁性地层年代学研究的基础上,他们进一步对贡觉盆地沉积序列进行了详细的磁组构研究,结果表明贡觉盆地在沉积过程中受到了持续的挤压应力,与盆地构造背景一致。约52Ma时,贡觉盆地的磁组构由“初始变形”组构转变为“铅笔状”组构,即最小磁化率主轴K3由垂直于地层面变为沿挤压方向呈带状分布(图4c), 磁化率椭球体由压扁状(T>0)变为拉长状(T<0)(图4c和图5),指示区域应力显著增加。这一时间与沉积速率的增加和构造旋转一致(图5),支持上述基于磁性地层学结果揭示的贡觉盆地沉积速率的增加主要反映构造变形而非气候变化的结论。此外,磁组构在约60 Ma前后并未发生明显变化,进一步表明该初始碰撞未对青藏高原构造产生显著影响。
图4 贡觉盆地沉积序列在不同阶段磁组构的变化特征,包括磁化率椭球体三轴方向地层校正前后的等面积投影、磁化率-各向异性度(Km-PJ)关系以及各向异性度-形状因子(PJ-T)关系
图5 贡觉盆地沉积序列磁组构参数(b-f)、古地磁偏角(g)、沉积速率(h)随地层厚度(a)和时间(i-j)的变化
研究成果发表于国际权威学术期刊EPSL和GRL。
1. Li S H, van Hinsbergen D J J, Najman Y, Liu-Zeng J, Deng C L, Zhu R X. Does pulsed Tibetan deformation correlate with Indian plate motion changes?[J]. Earth and Planetary Science Letters, 2020, 536: 116144. DOI:10.1016/j.epsl.2020.116144. (原文链接)
2. Li S H, Hinsbergen D J J, Shen Z S, Najman Y, Deng C L, Zhu R X. Anisotropy of magnetic susceptibility (AMS) analysis of the Gonjo Basin as an independent constraint to date Tibetan shortening pulses[J]. Geophysical Research Letters, 47(8): e2020GL087531. DOI: 10.1029/2020GL087531. (原文链接)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
李仕虎等-EPSL&GRL:青藏高原脉冲式变形与印度-亚洲大陆汇聚速率之间的关系
本站小编 Free考研/2020-05-30
相关话题/青藏高原 运动
高一帆等-JGR:青藏高原东缘-东北缘岩石圈变形特征及其动力学意义
自新生代以来,印度-欧亚陆陆碰撞导致了青藏高原的隆升和广泛的陆内变形。青藏高原东缘和东北缘是研究高原隆升、外向扩展及其与周边块体相互作用的关键区域。然而,当前对该区域的壳幔变形模式依然存在很大争议,提出了中下地壳流、岩石圈垂向一致性变形等不同的端元模型。 详细的地震各向异性结构信息是认识该区域壳幔 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30武澄泷等-EPSL&BSSA:青藏高原中部印度岩石圈板片撕裂和地壳流对共轭走滑断层的形成起到关键作用
新生代以来印度与欧亚大陆的持续碰撞挤压形成了规模宏大的青藏高原,多项研究认为印度岩石圈板片向北已俯冲至青藏高原中部,然而其俯冲的角度和几何形态还存在较大争议。在印度板片俯冲的前缘的上方,青藏高原中部发育一系列大型共轭走滑断层,该断层系统对印度与欧亚的南北向挤压以及高原的东西向拉张起到关键的协调作用, ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30周贝贝等-JGR:地壳软弱带可能是形成青藏高原中部共轭走滑区的控制因素
6500万年前,印欧板块发生碰撞,板块的持续汇聚作用造就了现今的青藏高原。青藏高原是陆陆碰撞造山带的热点研究区域。以逆冲断裂为代表的挤压构造大多发育在其周缘,指示着青藏高原持续的南北向缩短;大型走滑断层系则分布在边缘及块体边界,尤其是东南缘和东北缘,指示青藏高原物质向东挤出;高原内部则主要发育了一系 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30郭正府等-Geology:渐新世-中新世之交:青藏高原隆升过程中岩浆活动的转型
青藏高原的隆升是新生代最重要的地质事件之一,不仅影响了欧亚大陆的构造格局,还对新生代以来全球气候的变化有着深远的影响。一般认为,青藏高原的形成与印度-欧亚大陆碰撞及板块俯冲密切相关;但要弄清楚青藏高原隆升过程中地球动力学的演变过程,尚有很多关键的科学问题亟待解决,如“印度大陆岩石圈能俯冲到什么深度? ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30武澄泷等-EPSL:青藏高原中部下方印度岩石圈板片的撕裂
新生代以来印度与欧亚大陆的持续碰撞挤压形成了规模宏大的青藏高原,多种地震学研究结果初步揭示了印度岩石圈板片已俯冲至青藏高原中部,然而其俯冲的几何形态还存在较大争议。地震波速各向异性是地球内部形变场的直接证据,研究高原中部的各向异性可以为印度俯冲形态及相关动力学过程提供约束。中国科学院地质与地球物理所 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30樊龙刚等-EPSL:青藏高原东北缘东段古近纪地壳伸展
青藏高原东北缘由山脉与盆地镶嵌而成,并以发育大规模逆冲和走滑断裂为特征(图1)。对青藏高原东北缘的形成时间存在争议。一种观点认为它形成于始新世,另一种观点则认为形成于中新世。因此,确定青藏高原东北缘的形成时间对了解青藏高原如何侧向扩展具有重要意义。图1 青藏高原东北缘构造-地貌简图 中科院地质 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30王旭等-EPSL:青藏高原东缘-东北缘地壳结构与变形
青藏高原的隆升和横向扩展机制一直存在较大争议,现今有地壳通道流、块体挤出等不同的端元模型来解释高原的横向扩展。高原东缘和东北缘是高原横向扩展的前缘过渡带,在新生代发生了明显构造变形,该区也是我国大陆地震多发地带,研究其地壳结构与性质对认识高原隆升、北东向扩展以及孕震和发震机制具有重要意义。 中科院 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30薛振华等-Tectonics:青藏高原东缘龙门山中生代地壳增厚
青藏高原作为世界屋脊,其地壳发生了显著增厚。现今有走滑-逆冲推覆模式和Channel flow两种端元模型来解释地壳增厚。龙门山作为青藏高原的东部边界,很好地记录了地壳增厚过程。沿龙门山分布了一系列新元古代基底杂岩,在走滑-逆冲推覆增厚模式中,这些杂岩属于基底卷入变形的厚皮构造;在Channel f ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30刘震等-EPSL:谁主宰了青藏高原东北缘的侧向生长,地壳流还是大型走滑断裂?
青藏高原发育数条大型左旋走滑断裂,如北部的阿尔金断裂、海原断裂、昆仑断裂等,以Tapponnier为代表的****认为高原块体沿这些大型走滑断裂东向挤出和俯冲是高原东北向扩展的主要模式。但随着地球物理深部探测结果中壳内地震波低速区(层)和电磁低阻区(层)的不断发现,研究者更趋向于采用地壳流模型解释高 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30魏晓拙等-JGR:青藏高原东北缘的地球深部结构
青藏高原的形成机理一直是地球科学界的研究热点,对于其内部结构的研究有助于深入理解陆陆碰撞与造山带形成过程。而青藏高原东北缘作为高原生长的前沿地区,是对上述内容进行研究的最佳地点之一。为此,中科院地质地球所地球与行星物理院重点实验室地球内部结构学科组硕士研究生魏晓拙、导师姜明明副研究员,与梁晓峰副研究 ...中科院地质与地球物理研究所 本站小编 Free考研 2020-05-30