Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS
Li Yige,1,2,3, Zhang Dandan,1,2,31 Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China 2 Department of Medical Oncology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China 3 Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China;
the National Natural Science Foundation of China.81773027 the National Natural Science Foundation of China.81101640 Natural Science Foundation of Zhejiang Province of China.LY21H160027 Fundamental Research Funds for the Central Universities
PDF (659KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展. 遗传[J], 2021, 43(3): 203-214 doi:10.16288/j.yczz.20-320 Li Yige. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS. Hereditas(Beijing)[J], 2021, 43(3): 203-214 doi:10.16288/j.yczz.20-320
结直肠癌(colorectal cancer, CRC)是常见的恶性肿瘤之一,严重威胁人类健康。据统计,2018年全球CRC新发病例超过180万,死亡病例约86万;位居发病瘤谱第3位,死亡瘤谱第2位[1]。在我国,2015年CRC新发病例估计有38.76万例,死亡病例18.71万例;位列发病瘤谱第4位,死亡瘤谱第5位[2,3]。吸烟、缺乏锻炼、不健康的饮食习惯等环境因素均会增加CRC患病风险[3];此外,遗传因素也影响着CRC的发生,大型双生子研究表明CRC的遗传力约占35%[4]。可见,CRC受遗传与环境因素共同作用。随着人类基因组计划等大型项目的开展以及测序技术的进步,利用全基因组关联研究(genome-wide association studies, GWAS)发现了大量结直肠癌易感位点,为了解和防治结直肠癌提供信息。
A:启动子区SNP的潜在功能机制。通过影响与转录因子的结合,调控靶基因的表达,影响结直肠癌发生;B:内含子区SNP的潜在功能机制。常在转录因子的参与下,通过远距离启动子增强子相互作用,影响靶基因表达;C:3ʹUTR区SNP的潜在功能机制。往往通过改变与miRNA的结合,影响靶基因转录后水平;D:外显子区SNP的潜在功能机制。可能通过改变氨基酸序列,影响蛋白与蛋白之间的相互作用。 Fig. 2Summary of the potential functional mechanisms of causal SNPs
BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J Clin , 2018, 68(6): 394- 424. [本文引用: 1]
WuCX, GuK, GongYM, ZhengRS, WangSM, ChenR, ZhangSW, ShiY, WeiWQ, FuC, HeJ. Analysis of incidence and mortality of colorectal cancer in China, 2015 China Oncol, 2020, 30(4): 241- 245. [本文引用: 1]
LichtensteinP, HolmNV, VerkasaloPK, IliadouA, KaprioJ, KoskenvuoM, PukkalaE, SkyttheA, HemminkiK. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland N Engl J Med , 2000, 343(2): 78- 85. [本文引用: 1]
FarashiS, KryzaT, ClementsJ, BatraJ. Post-GWAS in prostate cancer: from genetic association to biological contribution Nat Rev Cancer , 2019, 19(1): 46- 59. [本文引用: 2]
LiangWQ, HouY, ZhaoCY. Schizophrenia-associated single nucleotide polymorphisms affecting microRNA function Hereditas(Beijing) , 2019, 41(8): 677- 685. [本文引用: 1]
BroderickP, Carvajal-CarmonaL, PittmanAM, WebbE, HowarthK, RowanA, LubbeS, SpainS, SullivanK, FieldingS, JaegerE, VijayakrishnanJ, KempZ, GormanM, ChandlerI, PapaemmanuilE, PenegarS, WoodW, SellickG, QureshiM, TeixeiraA, DomingoE, BarclayE, MartinL, SieberO, CORGIConsortium, KerrD, GrayR, PetoJ, CazierJB, TomlinsonI, HoulstonRS. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk Nat Genet , 2007, 39(11): 1315- 1317. [本文引用: 1]
FreedmanML, MonteiroANA, GaytherSA, CoetzeeGA, RischA, PlassC, CaseyG, DeBiasi M, CarlsonC, DugganD, JamesM, LiuPY, TichelaarJW, VikisHG, YouM, MillsIG. Principles for the post-GWAS functional characterization of cancer risk loci Nat Genet , 2011,43(6): 513- 518. [本文引用: 1]
EdwardsSL, BeesleyJ, FrenchJD, DunningAM. Beyond GWASs: illuminating the dark road from association to function Am J Hum Genet , 2013,93(5): 779- 797. [本文引用: 1]
LiuJY, ZhangLN, ZhengH. Research strategy of the case-control post-genome-wide association study Tianjin Med J , 2015, (7): 810- 812,813.
QuXF, WangMY, CaiSJ, WeiQY. Research progress and prospect of genome-wide association analysis of colorectal cancer Chin J Oncol Prev Treat , 2019, 11(1): 5- 12. [本文引用: 1]
George Priya Doss C, RajasekaranR, ArjunP, SethumadhavanR. Prioritization of candidate SNPs in colon cancer using bioinformatics tools: an alternative approach for a cancer biologist Interdiscip Sci , 2010,2(4): 320- 346. [本文引用: 1]
SteckSE, ButlerLM, KekuT, AntwiS, GalankoJ, SandlerRS, HuJJ. Nucleotide excision repair gene polymorphisms, meat intake and colon cancer risk Mutat Res , 2014,762: 24- 31. [本文引用: 1]
TheodoratouE, FarringtonSM, TimofeevaM, DinFV, SvintiV, TenesaA, LiuT, LindblomA, GallingerS, CampbellH, DunlopMG. Genome-wide scan of the effect of common nsSNPs on colorectal cancer survival outcome Br J Cancer , 2018,119(8): 988- 993. [本文引用: 1]
ZhangMZ, HuangC, WangZY, LvHB, LiXM. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract BMC Mol Cell Biol , 2020, 21( 1): 12. [本文引用: 1]
GorkinDU, QiuYJ, HuM, Fletez-BrantK, LiuT, SchmittAD, NoorA, ChiouJ, GaultonKJ, SebatJ, LiY, HansenKD, RenB. Common DNA sequence variation influences 3-dimensional conformation of the human genome Genome Biol , 2019, 20( 1): 255. [本文引用: 1]
LvHQ, HaoLL, LiuEH, WuZF, HanJQ, LiuY. Current status and future perspectives in bioinformatical analysis of Hi-C data Hereditas(Beijing) , 2020, 42(1): 87- 99. [本文引用: 1]
KangBW, JeonHS, ChaeYS, LeeSJ, ParkJS, ChoiGS, KimJG. Impact of genetic variation in microRNA-binding site on susceptibility to colorectal cancer Anticancer Res , 2016, 36(7): 3353- 3361. [本文引用: 1]
YangML, HuangZ, WuLN, WuR, DingHX, WangBG.lncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility Biosci Rep , 2019, 39(7): BSR20190708. [本文引用: 1]
JiaWR, ZengLY, LuoSQ, BaiF, ZhongR, WuL, HuangGL, PuXX. Association of microRNA-423 rs6505162 C>A polymorphism with susceptibility and metastasis of colorectal carcinoma Medicine , 2018, 97(6) e9846. [本文引用: 1]
ChenYT, DuML, ChenW, ZhuLJ, WuCY, ZhangZD, WangML, ChuHY, GuD, ChenJF.Polymorphismrs 2682818 in miR-618 is associated with colorectal cancer susceptibility in a Han Chinese population Cancer Med , 2018, 7(4): 1194- 1200. [本文引用: 1]
HeHJ, LeiL, ChenEF, XuXN, WangLL, PanJQ, YangFF, WangM, DongJ, YangJ. The screening of the functional microRNA binding site SNPs in sporadic colorectal cancer genes Cancer Biol Ther , 2017,18(6): 407- 413. [本文引用: 1]
QiuQC, LiuJ, ShaoJF, LouXY, ChenC, LinBY. Target-resequencing to identify microRNA-associated SNP and predict the effect of SNP on microRNA function in colorectal cancer patients Chin J Oncol , 2015, 37(10): 759- 763. [本文引用: 1]
LiJY, ZouL, ZhouY, LiL, ZhuY, YangY, GongYJ, LouJ, KeJT, ZhangY, TianJB, ZouDY, PengXT, ChangJ, GongJ, ZhongR, ZhouXB, MiaoXP. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population Mol Carcinog , 2017, 56(7): 1798- 807. [本文引用: 2]
ShenN, LiL, XuW, TianJB, YangY, ZhuY, GongYJ, KeJT, GongJ, ChangJ, ZhongR, MiaoXP. A missense variant in PTPN12 associated with the risk of colorectal cancer by modifying Ras/MEK/ERK signaling Cancer Epidemiol , 2019,59: 109- 114. [本文引用: 1]
LiJY, ChangJ, TianJB, KeJT, ZhuY, YangY, GongYJ, ZouDY, PengXT, YangN, MeiSF, WangXY, ChengLM, HuWG, GongJ, ZhongR, MiaoXP. A rare variant P507L in TPP1 interrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population Cancer Epidemiol Biomarkers Prev , 2018, 27(9): 1029- 1035. [本文引用: 1]
TianJB, YingPT, KeJT, ZhuY, YangY, GongYJ, ZouDY, PengXT, YangN, WangXY, MeiSF, ZhangYX, WangCY, ZhongR, ChangJ, MiaoXP.ANKLE1 N 6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability Int J Cancer , 2020, 146(12): 3281- 3293. [本文引用: 1]
SudA, KinnersleyB, HoulstonRS. Genome-wide association studies of cancer: current insights and future perspectives Nat Rev Cancer , 2017, 17(11): 692- 704. [本文引用: 1]
ChangJ, TianJB, YangY, ZhongR, LiJY, ZhaiK, KeJT, LouJ, ChenW, ZhuBB, ShenN, ZhangY, GongYJ, ZhuY, ZouDY, PengXT, HuangK, MiaoXP. A rare missense variant in TCF7L2 associates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant in the MYC enhancer Cancer Res , 2018, 78(17): 5164- 5172. [本文引用: 3]
MorenoV, AlonsoMH, ClosaA, VallésX, Diez-Villanueva A, ValleL, Castellví-BelS, Sanz-PamplonaR, Lopez-DorigaA, CorderoD, SoléX. Colon-specific eQTL analysis to inform on functional SNPs Br J Cancer , 2018,119(8): 971- 977. [本文引用: 1]
WuSS, MengQT, ZhangCC, SunH, LuRZ, GaoN, YangHB, LiXB, AschnerM, ChenR.DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus Int J Cancer , 2018, 143(1): 289- 297. [本文引用: 2]
TianJB, ChangJ, GongJ, LouJ, FuMP, LiJY, KeJT, ZhuY, GongYJ, YangY, ZouDY, PengXT, YangN, MeiSF, WangXY, ZhongR, CaiKL, MiaoXP. Systematic functional interrogation of genes in GWAS loci identified ATF1 as a key driver in colorectal cancer modulated by a promoter-enhancer interaction Am J Hum Genet , 2019, 105(1): 29- 47. [本文引用: 2]
GongJ, TianJ, LouJ, WangX, KeJ, LiJ, YangY, GongY, ZhuY, ZouD, PengX, YangN, MeiS, ZhongR, ChangJ, MiaoX. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267 Ann Oncol , 2018,29(3): 632- 639. [本文引用: 1]
YuCY, HanJX, ZhangJF, JiangPL, ShenCQ, GuoFF, TangJY, YanTT, TianXL, ZhuXQ, MaD, HuY, XieYH, DuW, ZhongM, ChenJX, LiuQ, SunDF, ChenYX, ZouWP, HongJ, ChenHY, FangJY. A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP90. Oncogene 2020, 39(6): 1347- 1360. [本文引用: 2]
WangYJ, WuSS, YangX, LiXB, ChenR. Association between polymorphism in the promoter region of lncRNA GAS5 and the risk of colorectal cancer Biosci Rep , 2019,39(4): BSR20190091. [本文引用: 1]
WangML, GuDY, DuML, XuZ, ZhangSZ, ZhuLJ, LuJC, ZhangR, XingJL, MiaoXP, ChuHY, HuZB, YangL, TangCJ, PanL, DuHN, ZhaoJ, DuJ, TongN, SunJ, ShenH, XuJ, ZhangZ, ChenJ. Common genetic variation in ETV6 is associated with colorectal cancer susceptibility Nat Commun , 2016,7: 11478.
ZouDY, LouJ, KeJT, MeiSF, LiJY, GongYJ, YangY, ZhuY, TianJB, ChangJ, ZhongR, GongJ, MiaoXP. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression Eur J Cancer , 2018,93: 1- 9.
MengQT, WuSS, WangYJ, XuJ, SunH, LuRZ, GaoN, YangHB, LiXB, TangBP, AschnerM, ChenR.MPO promoter polymorphism rs2333227 enhances malignant phenotypes of colorectal cancer by altering the binding affinity of AP-2α Cancer Res , 2018, 78(10): 2760- 2769. [本文引用: 1]
RenAJ, SunSW, LiSW, ChenT, ShuYQ, DuML, ZhuLJ. Genetic variants in SLC22A3 contribute to the susceptibility to colorectal cancer Int J Cancer , 2019, 145(1): 154- 163.
ZouDY, ZhangHL, KeJT, LiJY, ZhuY, GongYJ, YangY, TianJB, ZhangY, PengXT, CaiKL, ZhongR, ChangJ, MiaoXP. Three functional variants were identified to affect RPS24 expression and significantly associated with risk of colorectal cancer Arch Toxicol , 2020, 94(1): 295- 303. [本文引用: 1]
TianJB, LouJ, CaiYM, RaoML, LuZQ, ZhuY, ZouDY, PengXT, WangHX, ZhangM, NiuSY, LiY, ZhongR, ChangJ, MiaoXP. Risk SNP-mediated enhancer-promoter interaction drives colorectal cancer through both FADS2 and AP002754.2. Cancer Res 2020,80(9): 1804- 1818. [本文引用: 2]
StatkiewiczM, MaryanN, KuleckaM, KuklinskaU, OstrowskiJ, MikulaM. Functional analyses of a low-penetrance risk variant rs6702619/1p21.2 associating with colorectal cancer in Polish population Acta Biochim Pol , 2019, 66(3): 329- 336.
NiHZ, SuBF, PanLM, LiXY, ZhuXX, ChenXJ. Functional variants in PXR are associated with colorectal cancer susceptibility in Chinese populations Cancer Epidemiol , 2015,39(6): 972- 977.
LiJY, LiuH, ZouL, KeJT, ZhangY, ZhuY, YangY, GongYJ, TianJB, ZouDY, PengXT, GongJ, ZhongR, HuangK, ChangJ, MiaoXP. A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site Oncotarget , 2017, 8(37): 61318- 61326. [本文引用: 1]
KeJT, TianJB, LiJY, GongYJ, YangY, ZhuY, ZhangY, ZhongR, ChangJ, GongJ. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer Mol Carcinog , 2017, 56(9): 2014- 2021. [本文引用: 1]
LiSW, XuKL, GuDY, HeL, XieLS, ChenZX, FanZM, ZhuLJ, DuML, ChuHY, ZhangZD, WuY, NiM, WangML. Genetic variants in RPA1 associated with the response to oxaliplatin-based chemotherapy in colorectal cancer J Gastroenterol , 2019, 54(11): 939- 949. [本文引用: 2]
XieLS, LiSW, JinJ, HeL, XuKL, ZhuLJ, DuML, LiuYQ, ChuHY, ZhangZD, WangML, ShiDN, GuDY, NiM. Genetic variant in miR-21 binding sites is associated with colorectal cancer risk J Cell Mol Med , 2019,23(3): 2012- 2019. [本文引用: 1]
GuDY, LiSW, DuML, TangCJ, ChuHY, TongN, ZhangZD, WangML, ChenJF. A genetic variant located in the miR-532-5p -binding site of TGFBR1 is associated with the colorectal cancer risk J Gastroenterol , 2019, 54(2): 141- 148.
ShenCQ, YanTT, WangZH, SuHC, ZhuXQ, TianXL, FangJY, ChenHY, HongJ.Variantof SNP rs 1317082 at CCSlnc362 ( RP11-362K14.5 ) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis , 2018, 9(12) 1177. [本文引用: 1]
WuS, SunH, WangY, YangX, MengQ, YangH, ZhuH, TangW, LiX, AschnerM, ChenR.MALAT1 rs664589 polymorphism inhibits binding to miR-194-5p , contributing to colorectal cancer risk, growth, and metastasis Cancer Research , 2019, 79(20): 5432- 41. [本文引用: 1]
FuY, ZhangYZ, CuiJY, YangG, PengSF, MiWN, YinXY, YuY, JiangJW, LiuQ, QinYY, XuW.SNPrs 12982687 affects binding capacity of lncRNA UCA1 with miR-873-5p : involvement in smoking-triggered colorectal cancer progression Cell Commun Signal , 2020, 18(1) 37. [本文引用: 1]
JiangHQ, GeFY, HuBN, WuLM, YangHJ, WangHY. rs35301225 polymorphism in miR-34a promotes development of human colon cancer by deregulation of 3'UTR in E2F1 in Chinese population Cancer Cell Int , 2017, 17: 39. [本文引用: 1]
JinGF, ShenHB. Cancer risk prediction in post-genome- wide association study era. Chin J Epidemiol , 2015, 36(10): 1045- 1046. [本文引用: 1]
FramptonMJE, LawP, LitchfieldK, MorrisEJ, KerrD, TurnbullC, TomlinsonIP, HoulstonRS. Implications of polygenic risk for personalised colorectal cancer screening Ann Oncol , 2016,27(3): 429- 434. [本文引用: 1]
LiJY, ChangJ, ZhuY, YangY, GongYJ, KeJT, LouJ, ZhongR, GongJ. Risk prediction of colorectal cancer with common genetic variants and conventional non— genetic factors in a Chinese Han population Chin J Epidemiol , 2015, 36(10): 1053- 1057. [本文引用: 1]
SummersMG, MaughanTS, KaplanR, LawPJ, HoulstonRS, Escott-PriceV, CheadleJP. Comprehensive analysis of colorectal cancer-risk loci and survival outcome: A prognostic role for CDH1 variants Eur J Cancer , 2020,124: 56- 63. [本文引用: 1]
SongN, KimK, ShinA, ParkJW, ChangHJ, ShiJJ, CaiQY, KimDY, ZhengW, OhJH. Colorectal cancer susceptibility loci and influence on survival Genes Chromosomes Cancer , 2018, 57(12): 630- 637. [本文引用: 1]
PapachristosA, KemosP, KatsilaT, PanoiliaE, PatrinosGP, KalofonosH, SivolapenkoGB.VEGF-A and ICAM-1 gene polymorphisms as predictors of clinical outcome to first-line bevacizumab-based treatment in metastatic colorectal cancer Int J Mol Sci , 2019, 20( 22): 5791. [本文引用: 1]
WangHS, HaimanCA, BurnettT, FortiniBK, KolonelLN, HendersonBE, SignorelloLB, BlotWJ, KekuTO, BerndtSI, NewcombPA, PandeM, AmosCI, WestDW, CaseyG, SandlerRS, HaileR, StramDO, Le Marchand L. Fine- mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans Hum Mol Genet , 2013,22(24): 5048- 5055. [本文引用: 1]
SchmitSL, SchumacherFR, EdlundCK, ContiDV, IhenachoU, WanP, VanDen Berg D, CaseyG, FortiniBK, LenzHJ, Tusié-LunaT, Aguilar-SalinasCA, Moreno-Macías H, Huerta-ChagoyaA, Ordóñez-SánchezML, Rodríguez-GuillénR, Cruz-BautistaI, Rodríguez-TorresM, Muñóz-HernándezLL, Arellano-CamposO, GómezD, AlvirdeU, González-VillalpandoC, González-VillalpandoME, LeMarchand L, HaimanCA, FigueiredoJC. Genome-wide association study of colorectal cancer in Hispanics Carcinogenesis , 2016,37(6): 547- 556.
WangHS, SchmitSL, HaimanCA, KekuTO, KatoI, PalmerJR, vanden Berg D, WilkensLR, BurnettT, ContiDV, SchumacherFR, SignorelloLB, BlotWJ, ZanettiKA, HarrisC, PandeM, BerndtSI, NewcombPA, WestDW, HaileR, StramDO, FigueiredoJC, Hispanic Colorectal Cancer Study, Le Marchand L. Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans Int J Cancer , 2017, 140(12): 2728- 2733. [本文引用: 1]
ZhouD, JiangY, ZhongX, CoxNJ, LiuCY, GamazonER. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis Nat Genet , 2020, 52(11): 1239- 1246. [本文引用: 1]
SongN, LeeJ, ChoS, KimJ, OhJH, ShinA. Evaluation of gene-environment interactions for colorectal cancer susceptibility loci using case-only and case-control designs BMC cancer , 2019, 19(1): 1231. [本文引用: 1]
ZhangK, LiSW, GuDY, XuKL, ZhengR, XinJY, MengYX, BenS, ChuHY, ZhangZD, ShuYQ, DuML, LiuLX, WangML. Genetic variants in circTUBB interacting with smoking can enhance colorectal cancer risk Arch Toxicol , 2020, 94(1): 325- 333. [本文引用: 1]
JungSY, PappJC, SobelEM, ZhangZF. Post Genome- wide gene-environment interaction study using random survival forest: insulin resistance, lifestyle factors, and colorectal cancer risk Cancer Prev Res (Phila) , 2019, 12(12): 877- 890. [本文引用: 1]