Current metabolomics platforms: technical composition and applications
Fengxia Zhang, Guodong Wang,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
Supported by the State Key Laboratory of Plant Genomics of China Nos(SKLPG2016A-13) Supported by the State Key Laboratory of Plant Genomics of China Nos(SKLPG2016B-13)
作者简介 About authors 张凤霞,博士,工程师,研究方向:代谢组学分析方法及应用E-mail:zhangfx@genetics.ac.cn。
Abstract Metabolomics (defined as comprehensive small molecule chemical analysis), together with genomics, transcriptomics, proteomics and phenomics, now plays a fundamental role in system biological studies. Chromatography- mass spectrometry machines, which have the characteristics of high resolution and high sensitivity, are widely used for metabolomics analysis, both qualitatively and quantitatively. With the fast development of the chromatography-mass spectrometry technology, metabolomics analysis has been successfully applied in various biological research fields. Here, we introduce the different chromatography-mass spectrum machines used for metabolomics analysis and their applications to various biological issues by mainly using the metabolomics platform in Institute of Genetics and Developmental Biology as a case study. Keywords:small molecule chemicals;metabolomics platform;chromatography-mass spectrometry;system biology
PDF (424KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 张凤霞, 王国栋. 现代代谢组学平台建设及相关技术应用[J]. 遗传, 2019, 41(9): 883-892 doi:10.16288/j.yczz.19-122 Fengxia Zhang, Guodong Wang. Current metabolomics platforms: technical composition and applications[J]. Hereditas(Beijing), 2019, 41(9): 883-892 doi:10.16288/j.yczz.19-122
中国科学院遗传与发育生物学研究所代谢组学平台是在研究所和植物基因组学国家重点实验室的大力支持下成立的。该平台是以色谱-质谱联用分析技术为基础的小分子代谢物定性和定量分析平台,建立针对不同化学性质代谢产物(如挥发性、高极性等化合物、低丰度的植物激素等)的分析方法,形成能够多层次、多角度地对各种生物组织进行代谢靶标、代谢轮廓以及代谢指纹分析能力。2009年研究所启动了代谢组学平台建设,2010年购置、安装第一台气相色谱-质谱联用仪,2011年购置高灵敏、高通量的超高效液相色谱串联三重四极杆质谱联用仪(ultra high performance liquid chromatography coupled to triple quadrupole mass spectrometer, UHPLC-MS- QQQ),2013年安装了高分辨的超高效液相色谱串联四极杆飞行时间质谱联用仪(ultra high performance liquid chromatography coupled to ion mobility quadrupole- time of flight mass spectrometer, UHPLC-MS-Q-TOF),2018年配备了高分辨、高灵敏且具有离子淌度功能的超高效液相色谱串联四级杆飞行时间质谱联用仪(UHPLC-MS-IM-Q-TOF),引入了第三维度的分离功能。这些大型质谱仪均配备了大功率UPS电源(uninterruptible power supply, UPS),避免了意外断电对质谱仪造成的损害,保障了大型质谱仪的正常运行。图1所示为代谢组学平台目前所拥有的大型质谱仪。同时还配备有氮气发生器、空气压缩机、氮气发生器及空压机一体机和大型精密空调,既保证了质谱仪的连续供气,又为质谱仪提供一个温度恒定的环境。另外,实验室还配备了2台光照培养箱、2台全自动调节植物温室等植物培养必需设备、3台 -80℃超低温冰箱、1台高速冷冻离心机、2台小型控温离心机、1台真空浓缩仪、1台样品研磨仪、1套氮吹仪、1套旋转蒸发仪、3台精密天平、1台冷冻干燥仪、多台涡旋仪和超声仪等样品保存与预处理必须设备,保障了代谢组学平台工作的顺利开展。
FuJ, SchoemanJC,HarmsAC,van WietmarschenHA,VreekenRJ,BergerR,CuppenBV,LafeberFP,van der GreefJ,HankemeierT. Metabolomics profiling of the free and total oxidised lipids in urine by LC-MS/MS: application in patients with rheumatoid arthritis , 2016,408(23):6307-6319. [本文引用: 1]
SchoemanJC,HarmsAC,van WeeghelM,BergerR,VreekenRJ,HankemeierT. Development and application of a UHPLC-MS/MS metabolomics based comprehensive systemic and tissue-specific screening method for inflammatory, oxidative and nitrosative stress , 2018,410(10):2551-2568. [本文引用: 1]
OryP, BonnetA, MondeguerF, BreitwieserM, DubillotE, GraberM . Metabolomics based on UHPLC-QToF- and APGC-QToF-MS reveals metabolic pathways reprogramming in response to tidal cycles in the sublittoral species Mimachlamys varia exposed to aerial emergence , 2019,29:74-85. [本文引用: 1]
TrammellSA, BrennerC . Targeted, LCMS-based metabolomics for quantitative measurement of NAD + metabolites , 2013,4(5):e201301012. [本文引用: 1]
IchihashiY, KusanoM, KobayashiM, SuetsuguK, YoshidaS, WakatakeT, KumaishiK, ShibataA, SaitoK, ShirasuK . Transcriptomic and metabolomic reprogramming from roots to haustoria in the parasitic plant, Thesium chinense , 2018,59(4):724-733. [本文引用: 1]
FitianAI, NelsonDR, LiuC, XuY, AraratM, CabreraR . Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS- MS , 2014,34(9):1428-1444. [本文引用: 1]
FaragMA, GadHA, HeissAG, WessjohannLA . Metabolomics driven analysis of six nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics , 2014,151:333-342. [本文引用: 1]
NamKH, ShinHJ, PackIS, ParkJH, KimHB, KimCG . Metabolomic changes in grains of well-watered and drought-stressed transgenic rice , 2015,96(3):807-814. [本文引用: 1]
HanS, MicallefSA . Environmental metabolomics of the tomato plant surface provides insights on Salmonella enterica colonization , 2016,82(10):3131-3142. [本文引用: 1]
ZhaoLJ, HuangY, HuJ, ZhouH, AdeleyeA, KellerAA . 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano- Cu stress , 2016,50(4):2000-2010. [本文引用: 1]
WarthB, ParichA, BueschlC, SchoefbeckD, NeumannNK, KlugerB, SchusterK, KrskaR, AdamG, LemmensM, SchuhmacherR . GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment , 2015,11(3):722-738. [本文引用: 1]
GaoXX, LockeS, ZhangJZ, JoshiJ, Wang-PruskiGF . Metabolomics profile of potato tubers after phosphite treatment , 2018,9(4):845-864. [本文引用: 1]
ValetteM, ReyM, GerinF, ComteG, Wisniewski-DyéF . A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria , 2019, DOI: 10.1111/jipb.12810. [本文引用: 1]
XiongQ, CaoC, ShenT, ZhongL, HeH, ChenX . Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress , 2019,1867(3):237-247. [本文引用: 1]
RoldanMVG,EngelB,de Vos RCH,VereijkenP,AstolaL,GroenenboomM,van de Geest H,BovyA,MolenaarJ,van Eeuwijk F,HallRD. Metabolomics reveals organ- specific metabolic rearrangements during early tomato seedling development , 2014,10(5):958-974. [本文引用: 1]
FengYC, FuTX, ZhangLY, WangCY, Zhang DJ. Research on differential metabolites in distinction of rice(Oryza sativaL.) origin based on GC-MS , 2019, https://doi.org/10.1155/2019/1614504 . URL [本文引用: 1]
do NascimentoTP, SantosMCB, da Silva LimaLRS, NascimentoFR, CameronLC, FerreiraMSL . Dataset on phenolic profile of seven wheat genotypes along maturation , 2018,21:284-288. [本文引用: 1]
TzinV, PozoNF, RichterA, SchmelzEA, SchoettnerM, Sch?ferM, AhernKR, MeihlsLN, KaurH, HuffakerA, MoriN, DegenhardtJ, MuellerLA, JanderG . Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays , 2015,169(3):1727-1743. [本文引用: 1]
TanH, YangX, ZhangX, ZhengX, QuC, MuJ, FuFY, LiJ, GuanR, ZhangH, WangG, ZuoJ . Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds , 2011,156(3):1577-1588. [本文引用: 2]
YangX, NianJ, XieQ, FengJ, ZhangF, JingH, ZhangJ, DongG, LiangY, PengJ, WangG, QianQ, ZuoJ . Rice ferredoxin-dependent glutamate synthase regulates nitrogen- carbon metabolomes and is genetically differentiated between japonica and indica subspecies , 2016,9(11):1520-1534. [本文引用: 1]
XuF, FangJ, OuSJ, GaoS, ZhangF, DuL, XiaoY, WangH, SunX, ChuJ, WangG, ChuC . Variations in CYP78A13 coding region influence grain size and yield in rice , 2015,38(4):800-811. [本文引用: 1]
Liu X LiF, TangJ, WangW, ZhangF, WangG, ChuJ, YanC, WangT, ChuC, LiC . Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice , 2012,7:e50089. [本文引用: 2]
WeiG, TianP, ZhangF, QinH, MiaoH, ChenQ, HuZ, CaoL, WangM, GuX, HuangS, ChenMS, WangG . Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus) , 2016,172(1):603-618. [本文引用: 3]
WangC, ChenQ, FanD, LiJ, WangG, ZhangP . Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants , 2015,9(2):195-204. [本文引用: 1]
ChenQ, FanD, WangG . Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers , 2015,8(9):1434-1437. [本文引用: 1]
ChenX, ZhangH, SunH, LuoH, ZhaoL, DongZ, YanS, ZhaoC, LiuR, XuC, LiS, ChenH, JinW . IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation , 2017,173(1):307-325. [本文引用: 3]
AnX, DongZ, TianY, XieK, WuS, ZhuT, ZhangD, NiuC, MaB, HouQ, BaoJ, ZhangS, LiZ, WangY, YanT, SunX, ZhangY, WanX . ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize , 2019,12(3):343-359. [本文引用: 2]
LiQ, FangC, DuanZ, LiuY, QinH, ZhangJ, SunP, LiW, WangG, TianZ . Functional conservation and divergence of GmCHLI genes in polyploid soybean , 2016,88(4):584-596. [本文引用: 1]
WangB, ChuJ, YuT, XuQ, SunX, YuanJ, XiongG, WangG, WangY, LiJ . Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis , 2015,112(15):4821-4826. [本文引用: 1]
SongQ, LiQ, LiuY, ZhangF, MaB, ZhangW, ManW, DuW, WangG, ChenS, ZhangJ . Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants , 2013,64(14):4329-4341. [本文引用: 1]
YuS, CaoL, ZhouC, ZhangT, LianH, SunY, WuJ, HuangJ, WangG, WangJ . Sugar is an endogenous cue for juvenile-to-adult phase transition in plants , 2013,2:e00269. [本文引用: 1]
YuH, ZhangF, WangG, LiuY, LiuD . Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis , 2013,64(2):599-612. [本文引用: 1]
YuH, DuX, ZhangF, HuY, LiuS, JiangX, WangG, LiuD . A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle , 2012,236(2):387-399. [本文引用: 1]
LiC, WangY, LiuL, HuY, ZhangF, MergenS, WangG, Schl?ppiMR, ChuC . A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency , 2011,7(7):e1002196. [本文引用: 1]
McCloskeyD, UtrillaJ, NaviauxRK, PalssonBO, FeistAM . Fast Swinnex filtration (FSF): a fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media , 2015,11(1):198-209. [本文引用: 1]
ZimmermannM, ThormannV, SauerU, ZamboniN . Nontargeted profiling of coenzyme a thioesters in biological samples by tandem mass spectrometry , 2013,85(17):8284-8290. [本文引用: 1]
SnyderNW, BasuSS, ZhouZ, WorthAJ, BlairIA . Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme a thioesters , 2014,28(16):1840-1848. [本文引用: 1]
ZhengX, DengL, BakerES, IbrahimYM, PetyukVA, SmithRD . Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry , 2017,53(56):7913-7916. [本文引用: 1]
ZhengX, ZhangX, SchockerNS, RenslowRS, OrtonDJ, KhamsiJ, AshmusRA, AlmeidaIC, TangK, CostelloCE, SmithRD, MichaelK, BakerES . Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses , 2017,409(2):467-476. [本文引用: 1]
BarrosoA, GiménezE, KonijnenbergA, SanchoJ, Sanz- NebotV, SobottF . Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level , 2017,173:22-31. [本文引用: 1]
HinzC, LiggiS, GriffinJL . The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics , 2017,42:42-50. [本文引用: 1]
LiW, ZhangF, ChangY, ZhaoT, SchranzME, WangG . Nicotinate O-Glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana , 2015,27(7):1907-1924. [本文引用: 2]
LiW, ZhangF, WuR, JiaL, LiG, GuoY, LiuC, WangG . A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis , 2017,174(3):1492-1504. [本文引用: 1]
WuR, ZhangF, LiuL, LiW, PicherskyE, WangG . MeNA, controlled by reversible methylation of nicotinate, is a NAD precursor that undergoes long-distance transport in Arabidopsis , 2018,11(10):1264-1277. [本文引用: 1]
XuH, ZhangF, LiuB, HuhmanD, SumnerLW, DixonR, WangG . Characterization of the formation of branched short-chain fatty acid: CoAs for bitter acid biosynthesis in hop glandular trichomes , 2013,6(4):1301-1317. [本文引用: 1]
LiH, BanZ, QinH, MaL, KingAJ, WangG . A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway , 2015,167(3):650-659. [本文引用: 1]
BanZ, QinH, MitchellAJ, LiuB, ZhangF, WengJK, DixonRA, WangG . Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis , 2018,115(22):E5223-E5232. [本文引用: 2]
HeH, ChenL, QinL, LiuY, WangX . Mass spectrometry imaging for in situ analysis of endogenous molecules in plants Sci Sin Vitae, 2017,47(10):1043-1064. [本文引用: 1]