李清华,
何春梅,
刘彩玲,
游燕玲,
黄毅斌
福建省农业科学院土壤肥料研究所 福州 350013
基金项目:国家重点研发计划子课题(2018YFD02003035*)、闽侯农田生态系统福建省野外科学观测研究站(闽科基[2018]17号)、“5511”协同创新工程(XTCXGC2021009)资助
详细信息
通讯作者:王飞, 主要从事土壤资源评价与持续利用研究。E-mail: fjwangfei@163.com
中图分类号:S143; S153; S158计量
文章访问数:101
HTML全文浏览量:33
PDF下载量:32
被引次数:0
出版历程
收稿日期:2021-05-02
录用日期:2021-08-03
网络出版日期:2021-10-08
刊出日期:2021-12-09
Combined return of rice straw and organic fertilizer to yellow-mud paddy soil to improve the rice productivity and substitute chemical fertilizers
WANG Fei,,LI Qinghua,
HE Chunmei,
LIU Cailing,
YOU Yanling,
HUANG Yibin
Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
Funds:This study was supported by the National Key Research and Development Program of China (2018YFD02003035*), the Fund of Minhou Field Scientific Observation and Research Station for Farmland Ecosystem in Fujian (MIN KEJI [2018]17), and ‘5511’ Collaborative Innovation Project (XTCXGC2021009)
More Information
Corresponding author:WANG Fei, E-mail: fjwangfei@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:作物秸秆和畜禽粪肥是有机肥资源的主要组成。研究等氮施肥下稻秸-有机肥联合还田对南方黄泥田水稻产能、化肥替代与养分吸收利用的影响, 可为南方丘陵稻田改土培肥、增产提质增效提供依据。基于连续4年田间定位试验, 设置6个处理, 有机物料联合还田氮素投入分别占农田总氮投入的0 (RO0)、20% (RO20)、40% (RO40)、60% (RO60)、80% (RO80)与100% (RO100), 其中RO20、RO40、RO60、RO80和RO100处理稻秸干物量(kg?hm?2)投入分别为750、1500、2250、3000和3750, 氮素不足部分有机肥补足, 分析了水稻产量、养分吸收利用以及肥力因子变化。结果表明, 连续4年, RO20、RO40、RO60与RO80处理的水稻籽粒平均产量较RO0增幅8.4%~13.9%(P<0.05), 但随着有机物料配施比重的提高, 产量增幅呈下降趋势, RO100处理与RO0产量基本持平。在产量组成因子中, 配施有机物料处理的有效穗增加最为明显。RO20和RO40处理的水稻效益分别较RO0增加2204元?hm?2和527元?hm?2。除RO100处理外, 其他有机物料联合还田处理的水稻地上部植株氮、磷和钾养分吸收量较RO0分别显著增加8.5%~14.9%、8.5%~14.8%和8.6%~16.9% (P<0.05), 均以RO20处理最高; 有机物料联合还田处理的氮素回收率较RO0提高6.5~11.4个百分点, 其中RO20显著高于RO80和RO100处理(P<0.05)。有机物料联合还田不同程度提高了籽粒钙、镁、锌含量, 但降低了铁含量。此外, 有机物料联合还田提高了土壤pH、有机质、全氮、有效磷、速效钾含量以及微生物量碳、氮及脲酶活性, 降低了土壤容重。综上, 连续4年, 稻秸-有机肥联合还田提高了黄泥田产能与养分利用水平, 有机物料联合还田可替代化肥。综合考虑水稻增产效应、化肥减施、效益与肥力提升效果, 等氮施肥下, 稻秸-有机肥联合还田, 以替代20%化肥效果最佳, 其次为替代40%化肥效果较好。
关键词:黄泥田/
稻秸还田/
有机肥/
氮肥回收率/
化肥替代/
水稻产能/
养分吸收
Abstract:Crop straw and livestock manure, the main components of organic fertilizer resources, play important roles in the improvement of soil fertility and reduction of chemical fertilizer. To provide a basis for improving the soil fertility, crop yield and benefits of rice in a southern hilly area, various amounts of combined rice straw and organic fertilizer were returned to yellow-mud paddy soils under uniform total N input conditions and the effects on the rice production capacity, chemical fertilizer substitution, and plant nutrient uptake were studied. The field experiment was conducted in a yellow-mud paddy field in Minqin County, Fujian Province over four consecutive years. The experiment involved six treatments with uniform total N input but varying percentages of replacing N from a mix of rice straw and organic fertilizer (RO); that was, 0 (RO0, CK), 20% (RO20), 40% (RO40), 60% (RO60), 80% (RO80), and 100% (RO100) of N input. The dry amounts of rice straw applied in treatments of RO20, RO40, RO60, RO80, and RO100 were 750 kg?hm?2, 1500 kg?hm?2, 2250 kg?hm?2, 3000 kg?hm?2, and 3750 kg?hm?2, respectively; and the shortage of N was supplied by organic ferilizer. The variations in rice yield, nutrient uptake, and soil fertility factors were analyzed. As a result, the 4-year average yield of rice grains of RO20, RO40, RO60, and RO80 treatments significantly increased by 8.4%–13.9% relative to the yield of CK (P<0.05). However, the increasement of yield tended to decline with the increased application rates of organic materials, as the rice yield of RO100 was comparable to that of CK. Among the yield components, the effective spike significantincreased by RO treatments. The benefits of rice of RO20 and RO40 treatments were 2204 ¥?hm?2 and 527 ¥?hm?2 higher than that of CK, respectively. The uptake of N, P and K by rice plants under various RO treatments significantly increased by 8.5%?14.9%, 8.5%?14.8% and 8.6%?16.9%, respectively, compared with CK, except for RO100 treatment. The recovery rate change of N in all RO treatments increased by 6.5?11.4 percentage points, with the differences between RO20 and RO80 or RO100 were statistically significant (P<0.05). Although the contents of Ca, Mg and Zn in rice grains increased, the content of Fe decreased following the return of organic materials. The RO treatments increased soil pH and the contents of organic matter, total N, available P, available K, microbial biomass C, microbial biomass N and urease activity; but decreased the soil bulk density. In conclusion, the combined return of rice straw and organic fertilizer to yellow-mud paddy soil for 4 consecutive years improved rice productivity and fertilizer uptake. In this study, the combination of organic materials can completely replace the chemical fertilizers. Based on the rice yield, reduction of chemical fertilizer use, and improvement of farmer earnings and soil fertility, RO20 treatment was considered as the best fertilization regime, followed by RO40 treatment.
Key words:Yellow-mud paddy soil/
Straw incorporation/
Organic fertilizer/
Nitrogen recovery rate/
Chemical fertilizer substitution/
Rice productivity/
Nutrient uptake
HTML全文

图1不同稻秸-有机肥联合还田处理下水稻分蘖期分蘖数(a)和株高(b)的变化(第4年)
各处理简称见表1。Abbreviations for each treatment are shown in Table 1.
Figure1.Changes of tillering number (a) and plant height (b) of rice plant at tillering stage under different treatments of combined returning of rice straw and organic fertilizer in the fourth year of experiment

表1不同处理稻秸-有机肥联合还田下氮磷钾养分每年投入量
Table1.Annual input of nitrogen, phosphorus and potassium of different treatments of combined returning of rice straw and organic fertilizer
处理 Treatment | N | P2O5 | K2O |
RO0 | 135.0 | 54.0 | 94.5 |
RO20 | 135.0(27.0) | 61.1(17.9) | 114.1(38.5) |
RO40 | 135.0(54.0) | 68.2(35.8) | 133.4(76.7) |
RO60 | 135.0(81.0) | 75.3(53.7) | 152.8(115.0) |
RO80 | 135.0(108.0) | 82.4(71.6) | 172.2(153.3) |
RO100 | 135.0(135.0) | 89.5(89.5) | 191.6(191.6) |
括号外数据为养分总投入, 括号内数据为稻秸-有机肥联合还田养分投入量。The data outside the parentheses are total nutrient input, the data in the parentheses are nutrients input from rice straw and organic fertilizer. RO0: 100% of chemical fertilizer; RO20: 20% of combined organic material and 80% of chemical fertilizer; RO40: 40% of combined organic material and 60% of chemical fertilizer; RO60: 60% of combined organic material and 40% of chemical fertilizer; RO80: 80% of combined organic material and 20% of chemical fertilizer; RO100: 100% of combined organic material. |

表2不同稻秸-有机肥联合还田处理下水稻产量
Table2.Rice yield under different treatments of combined returning of rice straw and organic fertilizer
处理 Treatment | 有效穗 Effective panicle (×104?hm?2) | 每穗实粒数 Filled grains number per panicle | 千粒重 1000-grain weight (g) | 第4年 In the fourth year | 4年平均 Four years average | |||
籽粒产量 Grain yield (kg?hm?2) | 稻秸产量 Straw yield (kg?hm?2) | 籽粒产量 Grain yield (kg?hm?2) | 稻秸产量 Straw yield (kg?hm?2) | |||||
RO0 | 98.84±14.52b | 185.5±10.2a | 27.33±0.58a | 5863±673c | 4139±233b | 6403±429b | 3650±194c | |
RO20 | 134.40±6.40a | 206.8±22.0a | 26.72±0.91a | 6576±713a | 5585±110a | 7295±435a | 4290±135a | |
RO40 | 123.02±13.03a | 218.6±38.1a | 27.74±0.64a | 6580±953a | 5654±1224a | 6974±434a | 4151±261ab | |
RO60 | 118.04±10.52ab | 186.7±18.4a | 27.40±0.51a | 6287±808ab | 4970±554ab | 7017±582a | 4025±202b | |
RO80 | 114.49±15.14ab | 224.3±5.2a | 27.27±0.20a | 6163±919bc | 5059±1006ab | 6944±481a | 3967±231b | |
RO100 | 101.69±2.46b | 210.4±36.8a | 26.69±0.54a | 5783±584c | 4645±1570ab | 6493±345b | 3406±278d | |
有效穗、每穗实粒数与千粒重为第4年观测值。同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。The data of effective panicle, filled grains number per panicle and 1000-grain weight were the fourth year values. Values followed by different lowercase letters in a column are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

表3不同稻秸-有机肥联合还田处理下水稻施肥经济效益(4年平均)
Table3.Rice benefits under different fertilization treatments of combined returning of rice straw and organic fertilizer (4-year average)
处理 Treatment | 产值 Output value (¥?hm?2) | 肥料成本 Fertilizer cost (¥?hm?2) | 施肥效益 Fertilization benefit (¥?hm?2) |
RO0 | 20 490 | 1539 | 18 951 |
RO20 | 23 344 | 2189 | 21 155 |
RO40 | 22 317 | 2839 | 19 478 |
RO60 | 22 454 | 3488 | 18 966 |
RO80 | 22 221 | 4138 | 18 083 |
RO100 | 20 778 | 4788 | 15 990 |
籽粒价格为3.2元?kg?1, 尿素价格为2.2元?kg?1, 过磷酸钙价格为0.9元?kg?1, 氯化钾价格为3.1元?kg?1, 有机肥价格为0.7元?kg?1。效益仅计肥料成本。各处理简称见表1。The prices of grain, urea, superphosphate, potassium chloride, organic fertilizer are 3.2 ¥?kg?1, 2.2 ¥?kg?1, 0.9 ¥?kg?1, 3.1 ¥?kg?1 and 0.7 ¥?kg?1. Only fertilizer cost was calculated. Abbreviation for each treatment is shown in Table 1. |

表4不同稻秸-有机肥联合还田处理下水稻植株氮素养分吸收量及回收率变化(4年平均)
Table4.N uptake and recovery efficiency change of rice under different treatments of combined returning of rice straw and organic fertilizer (4-year average)
处理 Treatment | 籽粒吸收量 Grain uptake (kg?hm?2) | 稻秸吸收量 Straw uptake (kg?hm?2) | 吸收总量 Total uptake (kg?hm?2) | 回收率变化 Recovery rate change (%) |
RO0 | 75.37±5.05b | 27.91±1.48c | 103.28±4.70c | — |
RO20 | 85.87±5.11a | 32.80±1.03a | 118.67±4.08a | 11.4±3.0a |
RO40 | 82.09±5.10a | 31.74±2.00ab | 113.83±5.25ab | 7.8±3.9ab |
RO60 | 82.60±6.85a | 30.77±1.54b | 113.37±6.61ab | 7.5±4.9ab |
RO80 | 81.73±5.66a | 30.33±1.76b | 112.06±3.90b | 6.5±2.9b |
RO100 | 76.43±4.07b | 26.04±2.13d | 102.47±2.59c | ?0.6±1.9c |
同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。Values followed by different lowercase letters in a column are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

表5不同稻秸-有机肥联合还田处理下水稻植株磷、钾养分累积量(4年平均)
Table5.P and K uptake of rice under different treatments of combined returning of rice straw and organic fertilizer (4-year average)
处理 Treatment | P | K | |||||
籽粒吸收量 Grain uptake | 稻秸吸收量 Straw uptake | 吸收总量 Total uptake | 籽粒吸收量 Grain uptake | 稻秸吸收量 Straw uptake | 吸收总量 Total uptake | ||
RO0 | 16.59±1.11b | 5.34±0.28c | 21.93±1.04c | 18.21±1.22b | 92.63±4.91c | 110.84±4.60c | |
RO20 | 18.90±1.13a | 6.28±0.20a | 25.18±0.93a | 20.75±1.24a | 108.86±3.43a | 129.61±2.20a | |
RO40 | 18.07±1.12a | 6.07±0.38ab | 24.15±1.14ab | 19.84±1.23a | 105.33±6.63ab | 125.17±6.60ab | |
RO60 | 18.18±1.51a | 5.89±0.30b | 24.07±1.46b | 19.96±1.66a | 102.13±5.13b | 122.09±4.95b | |
RO80 | 17.99±1.25a | 5.81±0.34b | 23.80±0.91b | 19.75±1.37a | 100.66±5.85b | 120.41±4.49b | |
RO100 | 16.83±0.90b | 4.98±0.41d | 21.81±0.60d | 18.47±0.98b | 86.43±7.06d | 104.90±6.27d | |
同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。Values followed by different lowercase letters in a column are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

表6不同稻秸-有机肥联合还田处理下水稻籽粒中、微量元素含量(第4年)
Table6.Contents of intermediate and trace elements under different treatments of combined returning of rice straw and organic fertilizer (the fourth year)
处理 Treatment | Ca | Mg | Fe | Zn |
RO0 | 541.82±11.05c | 667.84±24.04b | 68.25±10.45a | 54.71±3.50a |
RO20 | 594.21±8.98b | 700.88±11.12ab | 45.87±2.12b | 67.22±6.97a |
RO40 | 622.05±49.65ab | 756.69±36.00a | 45.86±5.33b | 67.49±13.00a |
RO60 | 612.25±30.39ab | 721.44±27.50ab | 51.36±4.16b | 55.40±14.42a |
RO80 | 621.10±28.87ab | 730.42±27.6a | 54.55±2.19b | 61.41±13.02a |
RO100 | 655.79±19.71a | 759.55±43.05a | 52.40±1.22b | 68.53±26.78a |
同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。Values followed by different lowercase letters are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

表7不同稻秸-有机肥联合还田处理下土壤理化特性(第4年)
Table7.Soil chemicophysical properties under different treatments of combined returning of rice straw and organic fertilizer (the fourth year)
处理 Treatment | pH | 有机质 Organic matter (g?kg?1) | 全氮 Total N (g?kg?1) | 碱解氮 Available N (mg?kg?1) | 有效磷 Available P (mg?kg?1) | 速效钾 Available K (mg?kg?1) | 容重 Bulk density (g?cm?3) |
RO0 | 5.09±0.19b | 26.02±0.67c | 1.37±0.14b | 103.4±21.0a | 10.8±3.4b | 28.6±7.1d | 1.28±0.02a |
RO20 | 5.14±0.06b | 31.02±1.45ab | 1.48±0.43b | 101.0±8.7a | 12.8±8.0b | 65.3±18.9cd | 1.20±0.05bc |
RO40 | 5.23±0.14ab | 30.53±1.60b | 1.41±0.44b | 102.5±6.4a | 20.2±6.4ab | 96.0±42.9bc | 1.19±0.02bc |
RO60 | 5.33±0.05ab | 32.55±1.93ab | 1.55±0.44b | 112.8±13.7a | 20.0±7.2ab | 110.0±38.9ab | 1.22±0.01b |
RO80 | 5.33±0.11ab | 35.23±5.85a | 1.83±0.38a | 111.9±8.4a | 23.9±6.3a | 115.9±34.0ab | 1.17±0.01cd |
RO100 | 5.43±0.15a | 31.42±2.00ab | 1.80±0.25a | 114.3±18.6a | 19.1±8.5ab | 141.3±27.9a | 1.14±0.01d |
同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。Values followed by different lowercase letters are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

表8不同稻秸-有机肥联合还田处理下土壤生化特性(第4年)
Table8.Soil biochemical properties under different treatments of combined returning of rice straw and organic fertilizer (the fourth year)
处理 Treatment | 微生物量碳 Microbial biomass C content (mg?kg?1) | 微生物量氮 Microbial biomass N content (mg?kg?1) | 脲酶 Urease activity [mg(NH3-N)?kg?1?(24 h)?1] | 酸性磷酸酶 Acid phosphatase activity [mg(P2O5)?(100 g)?1?(24 h)?1] | 转化酶 Invertase activity [mL(0.1 mol?L?1Na2S2O3)?g?1] |
RO0 | 611.0±93.6a | 70.6±11.8b | 12.33±0.45b | 424.26±9.23a | 1.64±0.23a |
RO20 | 699.6±60.9a | 70.9±8.0b | 15.47±2.62a | 447.81±44.75a | 1.26±0.43ab |
RO40 | 677.3±107.8a | 80.3±4.4ab | 14.74±1.95ab | 423.71±33.76a | 1.03±0.29bc |
RO60 | 678.0±52.7a | 81.6±15.9ab | 13.96±2.07ab | 463.87±4.44a | 1.13±0.29abc |
RO80 | 642.8±25.3a | 84.7±7.0ab | 14.25±0.77ab | 427.16±31.89a | 0.68±0.16c |
RO100 | 644.9±95.7a | 90.5±9.4a | 14.83±0.77ab | 442.47±30.09a | 1.20±0.59abc |
同列数据后不同小写字母表示不同处理间在P<0.05水平差异显著。各处理简称见表1。Values followed by different lowercase letters are significantly different at P<0.05 level. Abbreviation for each treatment is shown in Table 1. |

参考文献
[1] | 谢军, 梁丰, 姜冠杰, 等. 不同培肥模式下红壤性水稻土的酸度变化特征及其影响因素[J]. 江西农业大学学报, 2020, 42(3): 626?632 XIE J, LIANG F, JIANG G J, et al. Characteristics of soil acidity change and its influencing factors of red paddy soil under different fertilization patterns[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(3): 626?632 |
[2] | 胡月明, 欧阳村香, 戴军, 等. 我国红壤资源农业利用研究进展[J]. 土壤与环境, 1999, 8(1): 53?57 HU Y M, OUYANG C X, DAI J, et al. Research progress on utilization of red soil resources in China[J]. Soil and Environmental Sciences, 1999, 8(1): 53?57 |
[3] | 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4): 577?584 WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in South China and prevention[J]. Soils, 2013, 45(4): 577?584 |
[4] | 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析[J]. 植物营养与肥料学报, 2017, 23(6): 1416?1432 doi: 10.11674/zwyf.17393 LI S T, LIU X Y, HE P. Analyses on nutrient requirements in current agriculture production in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1416?1432 doi: 10.11674/zwyf.17393 |
[5] | LI S T, LIU X Y, DING W C. Estimation of organic nutrient sources and availability for land application[J]. Better Crops, 2016, 100(3): 4?6 |
[6] | 袁嫚嫚, 邬刚, 胡润, 等. 秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响[J]. 植物营养与肥料学报, 2017, 23(1): 27?35 doi: 10.11674/zwyf.16092 YUAN M M, WU G, HU R, et al. Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 27?35 doi: 10.11674/zwyf.16092 |
[7] | 杨滨娟, 黄国勤, 徐宁, 等. 秸秆还田配施不同比例化肥对晚稻产量及土壤养分的影响[J]. 生态学报, 2014, 34(13): 3779?3787 YANG B J, HUANG G Q, XU N, et al. The effects of returning straw containing fertilizer with varying nutrient ratios on rice yield and soil fertility[J]. Acta Ecologica Sinica, 2014, 34(13): 3779?3787 |
[8] | 王如芳, 张吉旺, 董树亭, 等. 我国玉米主产区秸秆资源利用现状及其效果[J]. 应用生态学报, 2011, 22(6): 1504?1510 WANG R F, ZHANG J W, DONG S T, et al. Present situation of maize straw resource utilization and its effect in main maize production regions of China[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1504?1510 |
[9] | 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响[J]. 中国农业科学, 2018, 51(11): 2136?2142 doi: 10.3864/j.issn.0578-1752.2018.11.011 WEN Y C, ZHANG Y D, YUAN L, et al. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer[J]. Scientia Agricultura Sinica, 2018, 51(11): 2136?2142 doi: 10.3864/j.issn.0578-1752.2018.11.011 |
[10] | 侯红乾, 刘秀梅, 刘光荣, 等. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响[J]. 中国农业科学, 2011, 44(3): 516?523 doi: 10.3864/j.ssn.0578-1752.2011.03.011 HOU H Q, LIU X M, LIU G R, et al. Effect of long-term located organic-inorganic fertilizer application on rice yield and soil fertility in red soil area of China[J]. Scientia Agricultura Sinica, 2011, 44(3): 516?523 doi: 10.3864/j.ssn.0578-1752.2011.03.011 |
[11] | 盖霞普, 刘宏斌, 杨波, 等. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应[J]. 中国农业科学, 2019, 52(4): 676?689 doi: 10.3864/j.issn.0578-1752.2019.04.009 GAI X P, LIU H B, YANG B, et al. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years[J]. Scientia Agricultura Sinica, 2019, 52(4): 676?689 doi: 10.3864/j.issn.0578-1752.2019.04.009 |
[12] | 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133?3139 doi: 10.3864/j.issn.0578-1752.2008.10.029 XU M G, LI D C, LI J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133?3139 doi: 10.3864/j.issn.0578-1752.2008.10.029 |
[13] | 周卫. 低产水稻土改良与管理: 理论?方法?技术[M]. 北京: 科学出版社, 2015 ZHOU W. Theories and Approaches of Amelioration and Management of Low Yield Paddy Soils[M]. Beijing: Science Press, 2015 |
[14] | 王飞, 李清华, 林诚, 等. 福建黄泥田肥力质量特征与最小数据集[J]. 中国生态农业学报, 2018, 26(12): 1855?1865 WANG F, LI Q H, LIN C, et al. Characteristics of soil fertility quality and minimum dataset for yellow-mud paddy fields in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1855?1865 |
[15] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000 LU R K. Analytical Methods for Soil and Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000 |
[16] | 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986: 267–272 GUAN S Y. Research Methods of Soil Enzyme[M]. Beijing: China Agriculture Press, 1986: 267–272 |
[17] | 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411?1419 doi: 10.11674/zwyf.2013.0615 ZHANG W X, SUN G, HE P, et al. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1411?1419 doi: 10.11674/zwyf.2013.0615 |
[18] | 王飞, 李清华, 林诚, 等. 不同施肥模式对南方黄泥田耕层有机碳固存及生产力的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1447?1454 doi: 10.11674/zwyf.2015.0609 WANG F, LI Q H, LIN C, et al. Effect of different fertilization modes on topsoil organic carbon sequestration and productivity in yellow paddy field of Southern China[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1447?1454 doi: 10.11674/zwyf.2015.0609 |
[19] | 李委涛, 李忠佩, 刘明, 等. 秸秆还田对瘠薄红壤水稻土团聚体内酶活性及养分分布的影响[J]. 中国农业科学, 2016, 49(20): 3886?3895 doi: 10.3864/j.issn.0578-1752.2016.20.003 LI W T, LI Z P, LIU M, et al. Enzyme activities and soil nutrient status associated with different aggregate fractions of paddy soils fertilized with returning straw for 24 years[J]. Scientia Agricultura Sinica, 2016, 49(20): 3886?3895 doi: 10.3864/j.issn.0578-1752.2016.20.003 |
[20] | 房焕, 李奕, 周虎, 等. 稻麦轮作区秸秆还田对水稻土结构的影响[J]. 农业机械学报, 2018, 49(4): 297?302 doi: 10.6041/j.issn.1000-1298.2018.04.034 FANG H, LI Y, ZHOU H, et al. Effects of straw incorporation on paddy soil structure in rice-wheat rotation system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 297?302 doi: 10.6041/j.issn.1000-1298.2018.04.034 |
[21] | 王飞, 林诚, 李清华, 等. 长期不同施肥对南方黄泥田水稻子粒与土壤锌、硼、铜、铁、锰含量的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1056?1063 doi: 10.11674/zwyf.2012.12027 WANG F, LIN C, LI Q H, et al. Effects of long-term fertilization on contents of Zn, B, Cu, Fe and Mn in rice grain and soil in yellow paddy fields of southern China[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1056?1063 doi: 10.11674/zwyf.2012.12027 |
[22] | 邵兴芳, 申小冉, 张建峰, 等. 外源氮在中、低肥力红壤中的转化与去向研究[J]. 中国土壤与肥料, 2014, (2): 6?11 doi: 10.11838/sfsc.20140202 SHAO X F, SHEN X R, ZHANG J F, et al. Exogenous nitrogen transformation and fate characteristics under different fertility red soils[J]. Soil and Fertilizer Sciences in China, 2014, (2): 6?11 doi: 10.11838/sfsc.20140202 |
[23] | 李菊梅, 徐明岗, 秦道珠, 等. 有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J]. 植物营养与肥料学报, 2005, 11(1): 51?56 doi: 10.3321/j.issn:1008-505X.2005.01.009 LI J M, XU M G, QIN D Z, et al. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]. Plant Nutrition and Fertilizing Science, 2005, 11(1): 51?56 doi: 10.3321/j.issn:1008-505X.2005.01.009 |
[24] | 张刚, 王德建, 俞元春, 等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 877?885 doi: 10.11674/zwyf.15169 ZHANG G, WANG D J, YU Y C, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877?885 doi: 10.11674/zwyf.15169 |
[25] | 吕美蓉, 李忠佩, 刘明, 等. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响[J]. 中国农业科学, 2012, 45(2): 275?282 doi: 10.3864/j.issn.0578-1752.2012.02.009 LYU M R, LI Z P, LIU M, et al. Soil microbial biomass N turnover after long-term fertilization in paddy field[J]. Scientia Agricultura Sinica, 2012, 45(2): 275?282 doi: 10.3864/j.issn.0578-1752.2012.02.009 |
[26] | 刘骁蒨, 涂仕华, 孙锡发, 等. 秸秆还田与施肥对稻田土壤微生物生物量及固氮菌群落结构的影响[J]. 生态学报, 2013, 33(17): 5210?5218 doi: 10.5846/stxb201205290788 LIU X Q, TU S H, SUN X F, et al. Effect of different fertilizer combinations and straw return on microbial biomass and nitrogen-fixing bacteria community in a paddy soil[J]. Acta Ecologica Sinica, 2013, 33(17): 5210?5218 doi: 10.5846/stxb201205290788 |
[27] | 彭佩钦, 仇少君, 侯红波, 等. 15N交叉标记有机与无机肥料氮的转化与残留[J]. 生态学报, 2011, 31(3): 858?865 PENG P Q, QIU S J, HOU H B, et al. Nitrogen transformation and its residue in pot experiments amended with organic and inorganic 15N cross labeled fertilizers[J]. Acta Ecologica Sinica, 2011, 31(3): 858?865 |
[28] | 董春华, 高菊生, 曾希柏, 等. 长期有机无机肥配施下红壤性稻田水稻产量及土壤有机碳变化特征[J]. 植物营养与肥料学报, 2014, 20(2): 336?345 doi: 10.11674/zwyf.2014.0209 DONG C H, GAO J S, ZENG X B, et al. Effects of long-term organic manure and inorganic fertilizer combined application on rice yield and soil organic carbon content in reddish paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 336?345 doi: 10.11674/zwyf.2014.0209 |
[29] | 冀建华, 侯红乾, 刘益仁, 等. 长期施肥对双季稻产量变化趋势、稳定性和可持续性的影响[J]. 土壤学报, 2015, 52(3): 607?619 JI J H, HOU H Q, LIU Y R, et al. Effects of long-term fertilization on yield variation trend, yield stability and sustainability in the double cropping rice system[J]. Acta Pedologica Sinica, 2015, 52(3): 607?619 |
[30] | 孟琳, 张小莉, 蒋小芳, 等. 有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率[J]. 中国农业科学, 2009, 42(2): 532?542 doi: 10.3864/j.issn.0578-1752.2009.02.019 MENG L, ZHANG X L, JIANG X F, et al. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate[J]. Scientia Agricultura Sinica, 2009, 42(2): 532?542 doi: 10.3864/j.issn.0578-1752.2009.02.019 |
[31] | 唐玉霞, 孟春香, 贾树龙, 等. 不同碳源物质对土壤无机氮生物固定的影响[J]. 河北农业科学, 2004, 8(1): 6?9 doi: 10.3969/j.issn.1088-1631.2004.01.002 TANG Y X, MENG C X, JIA S L, et al. Effects of different organic substance on biological nitrogen fixation in soil[J]. Journal of Hebei Agricultural Sciences, 2004, 8(1): 6?9 doi: 10.3969/j.issn.1088-1631.2004.01.002 |
[32] | 王金洲, 卢昌艾, 张文菊, 等. 中国农田土壤中有机物料腐解特征的整合分析[J]. 土壤学报, 2016, 53(1): 16?27 doi: 10.11766/trxb201503090019 WANG J Z, LU C A, ZHANG W J, et al. Decomposition of organic materials in cropland soils across China: a meta analysis[J]. Acta Pedologica Sinica, 2016, 53(1): 16?27 doi: 10.11766/trxb201503090019 |
[33] | 刘守龙, 童成立, 吴金水, 等. 等氮条件下有机无机肥配比对水稻产量的影响探讨[J]. 土壤学报, 2007, 44(1): 106?112 doi: 10.3321/j.issn:0564-3929.2007.01.016 LIU S L, TONG C L, WU J S, et al. Effect of ratio of organic manure/chemical fertilizer in fertilization on rice yield under the same N condition[J]. Acta Pedologica Sinica, 2007, 44(1): 106?112 doi: 10.3321/j.issn:0564-3929.2007.01.016 |
[34] | 李占, 丁娜, 郭立月, 等. 有机肥和化肥不同比例配施对冬小麦—夏玉米生长、产量和品质的影响[J]. 山东农业科学, 2013, 45(7): 71?77 doi: 10.3969/j.issn.1001-4942.2013.07.023 LI Z, DING N, GUO L Y, et al. Effects of different ratios of organic manure and chemical fertilizer on growth, yield and quality of winter wheat and summer maize[J]. Shandong Agricultural Sciences, 2013, 45(7): 71?77 doi: 10.3969/j.issn.1001-4942.2013.07.023 |
[35] | 周江明. 有机-无机肥配施对水稻产量、品质及氮素吸收的影响[J]. 植物营养与肥料学报, 2012, 18(1): 234?240 doi: 10.11674/zwyf.2012.11186 ZHOU J M. Effect of combined application of organic and mineral fertilizers on yield, quality and nitrogen uptake of rice[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 234?240 doi: 10.11674/zwyf.2012.11186 |
[36] | 吕凤莲, 侯苗苗, 张弘弢, 等. 土冬小麦–夏玉米轮作体系有机肥替代化肥比例研究[J]. 植物营养与肥料学报, 2018, 24(1): 22?32 doi: 10.11674/zwyf.17210 LYU F L, HOU M M, ZHANG H T, et al. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat–summer maize rotation system in Lou soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22?32 doi: 10.11674/zwyf.17210 |
[37] | 龚海青, 付海美, 徐明岗, 等. 黑土有机氮肥替代率演变及其对土壤有机碳的响应[J]. 植物营养与肥料学报, 2018, 24(6): 1520?1527 doi: 10.11674/zwyf.18151 GONG H Q, FU H M, XU M G, et al. Potential substitution rate of chemical nitrogen with organic nitrogen in black soil and its correlation with soil organic carbon[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1520?1527 doi: 10.11674/zwyf.18151 |