删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

杉木人工林表土有机质含量及其对土壤养分的影响

本站小编 Free考研考试/2022-01-01

于文睿南1,,
潘畅1,
郭佳欢1,
冯会丽1,
陈杰2,
俞元春1,,
1.南京林业大学南方现代林业协同创新中心/南京林业大学生物与环境学院 南京 210037
2.福建省建阳范桥国有林场 南平 354200
基金项目:国家重点研发计划项目(2016YFD0600304)和江苏高校优势学科建设工程项目(PAPD)资助

详细信息
作者简介:于文睿南, 主要从事土壤生态研究。E-mail: 853255684@qq.com
通讯作者:俞元春, 主要从事森林土壤研究。E-mail: ycyu@njfu.edu.cn
中图分类号:S714.2

计量

文章访问数:56
HTML全文浏览量:32
PDF下载量:19
被引次数:0
出版历程

收稿日期:2021-04-07
录用日期:2021-06-23
网络出版日期:2021-08-20
刊出日期:2021-11-10

Topsoil organic matter and its effect on the soil nutrients contents of Cunninghamia lanceolata plantations

YUWEN Ruinan1,,
PAN Chang1,
GUO Jiahuan1,
FENG Huili1,
CHEN Jie2,
YU Yuanchun1,,
1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University / College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
2. Jianyang Fanqiao State-owned Forest Farm, Nanping 354200, China
Funds:This study was supported by the National Key Research and Development Project of China (2016YFD0600304) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

More Information
Corresponding author:E-mail: ycyu@njfu.edu.cn


摘要
HTML全文
(3)(4)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:土壤有机质在森林生态系统中具有重要作用, 是估算土壤碳储量、评价土壤肥力和质量的重要指标。本文利用已发表文献中的数据, 从省域尺度上分析了杉木人工林土壤有机质的分布特征及其对土壤养分含量的影响, 为杉木(Cunninghamia lanceolata)人工林可持续经营提供理论依据。本文以文献中广东、广西、湖南、江西、浙江、福建6省22个林场1092个研究数据为基础, 分析了我国杉木人工林主产区表层(0~20 cm)土壤有机质含量特征、对土壤类型和地形等的响应及其对土壤养分的影响。结果显示, 杉木人工林表层土壤有机质平均含量为(31.02±13.44) g·kg?1, 养分等级为中, 变异系数为43.33%, 属中等变异水平; 有效磷含量为(5.41±8.01) mg·kg?1, 养分等级为富, 属高度变异, 变异系数为148.06%; 全磷含量(0.49±0.38) g·kg?1, 养分等级为极贫, 变异系数为77.55%, 属中等变异。不同土壤类型有机质含量差异较大, 山地黄壤的含量最高, 为(46.63±16.88) g·kg?1, 暗红壤最低, 为(15.81±4.38) g·kg?1。林分密度、海拔、坡度和土壤pH是杉木人工林表土有机质含量变化的主要影响因素, 相对贡献量分别为?0.35、0.28、0.11和0.11。土壤有机质对全氮、有效氮、全钾、有效钾的贡献程度较高, 相对贡献量分别为0.17、0.47、0.16和0.21。结果表明: 杉木人工林表层土壤有机质的养分等级为中。从样本量占比区间来看, 杉木人工林表层土壤有机质分布等级较为集中, 主要分级表现出“多中下, 少富级, 无极贫”的分布特征。海拔、坡度和土壤pH对土壤有机质含量变化的影响表现出明显的正效应, 林分密度则为负效应; 土壤有机质对土壤全氮、有效氮、全钾、有效钾含量有较明显的正面促进作用, 对全磷具有微弱的负面影响。
关键词:杉木人工林/
土壤有机质/
土壤养分/
环境因子/
逐步回归分析/
结构方程模型
Abstract:Soil organic matter plays an important role in forest ecosystems and is an important index for estimating soil carbon storage and soil fertility and quality. In this study, the distribution of soil organic matter and its influence on soil nutrients were analyzed on a provincial scale and the impact of environmental factors on changes in the soil organic matter content of Chinese fir plantations (CFPs) was assessed to provide a theoretical basis for the sustainable management of CFPs. Data from 1092 forest farms in six provinces of China (Guangdong, Guangxi, Hunan, Jiangxi, Zhejiang, and Fujian) were used to characterize the distribution of soil organic matter and its effect on the soil nutrients in the topsoil (0–20 cm) in CFPs. The results showed that the average soil organic matter content of the CFPs was 31.02±13.44 g·kg?1, the nutrient grade was at a medium level, and the coefficient of variation was 43.33%, which represented a moderate variation level. The available phosphorus (AP) content was 5.41±8.01 mg·kg?1, the nutrient grade was rich, and the coefficient of variation was as high as 148.06%. The total phosphorus (TP) content was 0.49±0.38 g·kg?1, which was extremely poor, and the coefficient of variation was 77.55%, being moderately variable. The soil organic matter content of different soil types varied greatly. The content in mountain yellow soil was the highest (46.63±16.88 g·kg?1), and that in dark red soil was the lowest (15.81±4.38 g·kg?1). Stand density, elevation, slope, and soil pH were the main factors that affected the soil organic matter content in the topsoil of CFPs, with relative contributions of ?0.35, 0.28, 0.11, and 0.11, respectively. The contributions of soil organic matter to total nitrogen (TN), available nitrogen (AN), total potassium (TK), and available potassium (AK) were positive, with relative contributions of 0.17, 0.47, 0.16, and 0.21, respectively. However, soil organic matter contributes less to soil TP, with a relative contribution of ?0.09. In general, the nutrient grade of soil organic matter in the surface layer of CFPs was medium. The main grading performance was mainly characterized by moderate to inferior levels, and few rich levels and no extremely poor levels were observed. Altitude, slope, and soil pH had positive effects on soil organic matter, whereas stand density had a negative effect. Soil organic matter had a positive effect on soil TN, AN, TK, and AK and a weak negative effect on TP. The contribution of soil organic matter to TP was low; therefore, the lack of phosphorus in the soil may be the main factor limiting Chinese fir growth.
Key words:Chinese fir plantations/
Soil organic matter/
Soil nutrients/
Environmental factor/
Stepwise regression analysis/
Structural equation model

HTML全文


图1杉木人工林表层土壤pH (a)与土壤有机质(SOM, b)含量样本分布
Figure1.Samples distribution of surface soil pH (a) and soil organic matter content (SOM, b) in Chinese fir plantations


下载: 全尺寸图片幻灯片


图2不同省份(a, c)和不同土壤类型(b, d)杉木人工林表层土壤pH(a, b)与土壤有机质(SOM; c, d)含量分布特征
ZJ、JX、HN、GX、FJ和GD分别代表浙江省、江西省、湖南省、广西省、福建省和广东省; PS、MYS、MRS、YRS、RS、RYS、LRS和DRS分别代表紫壤、山地黄壤、山地红壤、黄红壤、红壤、红黄壤、赤红壤和暗红壤。ZJ, JX, HN, GX, FJ and GD represent Zhejiang Province, Jiangxi Province, Hunan Province, Guangxi Province, Fujian Province and Guangdong Province, respectively. PS, MYS, MRS, YRS, RS, RYS, LRS and DRS represent purple soil, mountain yellow soil, mountain red soil, yellow-red soil, red soil, red-yellow soil, lateritic red soil and dark red soil, respectively.
Figure2.Distribution characteristics of pH (a, b) and soil organic matter content (SOM; c, d) in the topsoil of Chinese fir plantations of different soil types (b, d) and different provinces (a, c)


下载: 全尺寸图片幻灯片


图3杉木人工林表层土壤有机质对土壤养分含量影响的结构方程模型图
模型左侧为环境影响因子[Altitude: 海拔, m; Density: 林分密度, 株·hm?2; Slope: 坡度, (°); MAT: 年平均温度, ℃; MAP: 平均降水量, mm; pH]; 模型右侧为土壤养分因子(TN: 全氮, g·kg?1; TP: 全磷, g·kg?1; TK: 全钾, g·kg?1; AN: 有效氮, mg·kg?1; AP: 有效磷, mg·kg?1; AK: 有效钾, mg·kg?1); 模型中部为土壤有机质(SOM, g·kg?1)。The left side of the model is the environmental impact factors [altitude, m; density, plant·hm?2; slope, (°); MAT: mean annual temperature,℃; MAP: mean annual precipitation, mm; pH]; the right side of the model is the soil nutrient factor (TN: total N, g·kg?1; TP: total P, g·kg?1; TK: total K, g·kg?1; AN: available N, mg·kg?1; AK: available K, mg·kg?1; AP: available P, mg·kg?1); the medium of the model is the soil organic matter (SOM, g·kg?1).
Figure3.Structural equation model for the effect of soil organic matter on soil nutrient content in Chinese fir plantations


下载: 全尺寸图片幻灯片

表1杉木人工林试验地概况
Table1.General situation of experimental fields of Chinese fir plantations
省份 Province试验地 Experimental field土壤类型 Soil type年份 Year经纬度 Latitude and longitude
广东 Guangdong 天井山林场 Tianjingshan forest farm 红壤 Red soil 2011 113.0436E, 24.6919N
梁化林场 Lianghua forest farm 赤红壤 Lateritic red soil 2014 114.7849E, 23.1966N
广西 Guangxi 大桂山林场 Daguishan forest farm 山地红壤 Mountain red soil 2016 111.5358E, 24.4171N
黄冕林场 Huangmian forest farm 山地红壤 Mountain red soil 2016 109.7645E, 24.4867N
林朵林场 Linduo forest farm 山地红壤 Mountain red soil 2016 107.1961E, 24.9829N
湖南 Hunan 会同生态站 Huitong ecological station 山地黄壤 Mountain yellow soil 2011 109.6012E, 26.7922N
黄丰桥林场 Huangfengqiao forest farm 红壤 Red soil 2012 113.4488,E 27.2308N
广坪林场 Guangping forest farm 山地黄壤 Mountain yellow soil 2006 109.6572E, 26.7572N
江西 Jiangxi 山下林场 Shanxia forest farm 红壤 Red soil 2003 114.6650E, 27.7447N
上村林场 Shangcun forest farm 黄红壤 Yellow-red soil 2003 115.8537E, 27.7600N
年珠林场 Nianzhu forest farm 红壤 Red soil 2003 114.5793E, 27.5785N
大岗山林场 Dagangshan forest farm 红壤 Red soil 2011 114.5814E, 27.5793N
浙江 Zhejiang 丽水林场 Lishui forest farm 红黄壤 Red-yellow soil 2004 119.3744E, 27.8524N
开化林场 Kaihua forest farm 红壤 Red soil 2018 118.4110E, 29.1459N
福建 Fujian 莘口教学林场 Xinkou teaching forest farm 山地红壤 Mountain red soil 2017 117.5497E, 26.1678N
宁化林场 Ninghua forest farm 紫壤 Purple soil 2017 116.6971E, 26.2389N
洋口林场 Yangkou forest farm 山地红壤 Mountain red soil 2017 117.9068E, 26.8177N
溪后林场 Xihou forest farm 红壤 Red soil 2007 117.9799E, 26.6352N
将乐林场 Jiangle forest farm 红壤 Red soil 2015 117.4771E, 26.7231N
旧县林场 Jiuxian forest farm 红壤 Red soil 2001 118.7429E, 27.5378N
溪东林场 Xidong forest farm 暗红壤 Dark red soil 2017 118.5982E, 27.0881N
溪后村林场 Xihou Village forest farm 暗红壤 Dark red soil 2015 117.9798E, 26.6389N


下载: 导出CSV
表2杉木人工林表层土壤有机质与养分含量的描述性统计
Table2.Descriptive statistics of soil organic matter and nutrients contents in the topsoil of Chinese fir plantations
土壤性质
Soil property
样本量
Samples
最小值
Minimum
最大值
Maximum
均值
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (%)
有机质 Organic matter (g?kg?1) 84 8.14 74.79 31.02 13.44 43.33
全氮 Total N (g?kg?1) 84 0.52 11.34 1.48 1.18 79.73
全磷 Total P (g?kg?1) 84 0.10 3.31 0.49 0.38 77.55
全钾 Total K (g?kg?1) 84 1.14 35.47 14.17 7.11 50.11
有效氮 Available N (mg?kg?1) 84 25.80 464.62 120.29 61.68 51.28
有效磷 Available P (mg?kg?1) 84 0.03 45.62 5.41 8.01 148.06
有效钾 Available K (mg?kg?1) 84 3.30 154.64 52.13 33.44 64.15
pH 84 2.80 5.84 4.60 0.45 9.78


下载: 导出CSV
表3杉木人工林表层土壤有机质与养分指标间的相关性
Table3.Correlation between soil organic matter and soil nutrients in the topsoil of Chinese fir plantations
变量
Variable
土壤有机质
Soil organic matter
全氮
Total N
全磷
Total P
全钾
Total K
有效氮
Available N
有效磷
Available P
有效钾
Available K
土壤有机质 Soil organic matter1.000
全氮 Total N0.1681.000
全磷 Total P?0.0840.301**1.000
全钾 Total K0.160?0.042?0.281**1.000
有效氮 Available N0.462**0.305**0.245*0.0771.000
有效磷 Available P?0.029?0.0090.504**?0.331**0.1731.000
有效钾 Available K0.2100.429**0.175?0.0780.247*?0.0701.000
  **表示在P<0.01水平上极显著相关, *表示在P<0.05水平上显著相关。样本数量为84。** and * indicate significant correlation at P<0.01 and P<0.05 levels, respectively. The number of samples is 84.


下载: 导出CSV
表4不同省份杉木人工林表层土壤有机质含量(Y)与土壤养分含量(X)的多因子及互作项逐步回归结果
Table4.Stepwise regression results of multiple factors and interactions of soil organic matter content (Y) and soil nutrients contents (X) in the topsoil of Chinese fir plantations in different provinces
省份
Province
拟合方程
Fitting equator
决定系数
Coefficient of determination
剩余通径系数
Residual path coefficient
广东 GuangdongY=52.016+101.111X1?1.118X40.99910.0299
福建 FujianY=3.918+0.494X1X6?0.0519X5X60.92090.2812
广西 GuangxiY=3.948?0.570X3+18.086X1X5?0.072X2X6?0.203X5X61.00000.0001
湖南 HunanY=81.848?1.330X5?5.071X2X3+0.309X2X6+0.033X5X60.99620.0618
江西 JiangxiY=?2.433+29.916X1?0.4X6+8.463X2X50.87170.3581
浙江 ZhejiangY=?0.906+15.984X1+0.01X3X40.83780.4028
综合 ComprehensiveY=29.848?2.729X1?2.134X5+0.105X2X3+0.234X3X51.00000.0018
  X1: 全氮; X2: 全磷; X3: 全钾; X4: 有效氮; X5: 有效磷; X6: 有效钾。X1: total N; X2: total P; X3: total K; X4: available N; X5: available P; X6: available K.


下载: 导出CSV

参考文献(39)
[1]YU Y C, YANG J Y, ZENG S C, et al. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China[J]. Journal of Soils and Sediments, 2017, 17(9): 2230?2238 doi: 10.1007/s11368-016-1472-8
[2]FANG X M, ZHANG X L, ZONG Y Y, et al. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests[J]. PLoS One, 2017, 12(10): e0186905 doi: 10.1371/journal.pone.0186905
[3]国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014, (1): 1?2
National Forestry Administration. Results of the eighth national forest resources inventory[J]. Forest Resources Management, 2014, (1): 1?2
[4]唐健, 覃祚玉, 王会利, 等. 广西杉木主产区连栽杉木林地土壤肥力综合评价[J]. 森林与环境学报, 2016, 36(1): 30?35
TANG J, QIN Z Y, WANG H L, et al. Assessment of soil fertility of continuous plantation of Cunninghamia lanceolata in main producing regions in Guangxi[J]. Journal of Forest and Environment, 2016, 36(1): 30?35
[5]范少辉, 盛炜彤, 马祥庆, 等. 多代连栽对不同发育阶段杉木人工林生产力的影响[J]. 林业科学研究, 2003, 16(5): 560?567 doi: 10.3321/j.issn:1001-1498.2003.05.007
FAN S H, SHENG W T, MA X Q, et al. Effect of successive planting on productivity of Chinese fir of different age plantations[J]. Forest Research, 2003, 16(5): 560?567 doi: 10.3321/j.issn:1001-1498.2003.05.007
[6]WU Z Y, LI J J, ZHENG J, et al. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations[J]. Scientific Reports, 2017, 7: 6691 doi: 10.1038/s41598-017-06768-x
[7]MTAMBANENGWE F, MAPFUMO P. Organic matter management as an underlying cause for soil fertility gradients on smallholder farms in Zimbabwe[J]. Nutrient Cycling in Agroecosystems, 2005, 73(2/3): 227?243
[8]LUAN J W, XIANG C H, LIU S R, et al. Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen Mountain, Sichuan, China[J]. Geoderma, 2010, 156(3/4): 228?236
[9]USSIRI D A N, JOHNSON C E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods[J]. Geoderma, 2003, 111(1/2): 123?149
[10]WICKLAND K P, NEFF J C. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls[J]. Biogeochemistry, 2008, 87(1): 29?47 doi: 10.1007/s10533-007-9166-3
[11]杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J]. 林业科学, 2016, 52(12): 1?12 doi: 10.11707/j.1001-7488.20161201
YANG C D. Decline of quantity and quality of soil organic matter is the key factor restricting the growth of plantation in China[J]. Scientia Silvae Sinicae, 2016, 52(12): 1?12 doi: 10.11707/j.1001-7488.20161201
[12]SIMARD M, LECOMTE N, BERGERON Y, et al. Forest productivity decline caused by successional paludification of boreal soils[J]. Ecological Applications, 2007, 17(6): 1619?1637 doi: 10.1890/06-1795.1
[13]MANLAY R J, FELLER C, SWIFT M J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture, Ecosystems & Environment, 2007, 119(3/4): 217?233
[14]WEINTRAUB S R, WIEDER W R, CLEVELAND C C, et al. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest[J]. Biogeochemistry, 2013, 114(1/2/3): 313?326
[15]GAO J K, LIANG C L, SHEN G Z, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere, 2017, 176: 108?116 doi: 10.1016/j.chemosphere.2017.02.104
[16]ZENG Q C, DARBOUX F, MAN C, et al. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China)[J]. CATENA, 2018, 167: 276?283 doi: 10.1016/j.catena.2018.05.009
[17]王清奎, 汪思龙, 冯宗炜. 杉木人工林土壤可溶性有机质及其与土壤养分的关系[J]. 生态学报, 2005, 25(6): 1299?1305 doi: 10.3321/j.issn:1000-0933.2005.06.010
WANG Q K, WANG S L, FENG Z W. A study on dissolved organic carbon and nitrogen nutrients under Chinese fir plantation: Relationships with soil nutrients[J]. Acta Ecologica Sinica, 2005, 25(6): 1299?1305 doi: 10.3321/j.issn:1000-0933.2005.06.010
[18]刘飞鹏, 储双双, 裴向阳, 等. 华南3种人工林土壤有机质和养分含量及其综合评价[J]. 南京林业大学学报: 自然科学版, 2014, 38(2): 81?85
LIU F P, CHU S S, PEI X Y, et al. Soil organic matter and nutrient contents and integrated evaluation of them under three typical planted forests in south China[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2014, 38(2): 81?85
[19]田大伦, 方晰, 项文化. 湖南会同杉木人工林生态系统碳素密度[J]. 生态学报, 2004, 24(11): 2382?2386 doi: 10.3321/j.issn:1000-0933.2004.11.006
TIAN D L, FANG X, XIANG W H. Carbon density of the Chinese fir plantation ecosystem at Huitong, Hunan Province[J]. Acta Ecologica Sinica, 2004, 24(11): 2382?2386 doi: 10.3321/j.issn:1000-0933.2004.11.006
[20]陈怀满, 牛树奎, 刘艳红. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002
CHEN H M, NIU S K, LIU Y H. Behavior of Chemical Substances in Soil and Environmental Quality[M]. Beijing: Science Press, 2002
[21]李俊清. 森林生态学[M]. 2版. 北京: 高等教育出版社, 2010
LI J Q. Forest Ecology[M]. Second edition. Beijing: Higher Education Press, 2010
[22]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000
BAO S D. Soil Agrochemical Analysis[M]. Beijing: China Agricultural Press, 2000
[23]龚子同, 张甘霖, 陈志城. 土壤发生与系统分类[M]. 北京: 科学出版社, 2007
GONG Z T, ZHANG G L, CHEN Z C. Pedogenesis and Soil Taxonomy[M]. Beijing: Science Press, 2007
[24]SALES M V S, ALEIXO S, GAMA-RODRIGUES A C, et al. Structural equation modeling for the estimation of interconnections between the P cycle and soil properties[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 193?207 doi: 10.1007/s10705-017-9879-1
[25]刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用[J]. 植物生态学报, 2011, 35(12): 1209?1218 doi: 10.3724/SP.J.1258.2011.01209
LIU X D, QIAO Y N, ZHOU G Y. Controlling action of soil organic matter on soil moisture retention and its availability[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1209?1218 doi: 10.3724/SP.J.1258.2011.01209
[26]LOAIZA PUERTA V, PUJOL PEREIRA E I, WITTWER R, et al. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley[J]. Soil and Tillage Research, 2018, 180: 1?9 doi: 10.1016/j.still.2018.02.007
[27]王瑞华, 葛晓敏, 唐罗忠. 林下植被多样性、生物量及养分作用研究进展[J]. 世界林业研究, 2014, 27(1): 43?48
WANG R H, GE X M, TANG L Z. A review of diversity, biomass and nutrient effect of understory vegetation[J]. World Forestry Research, 2014, 27(1): 43?48
[28]WANG Q K, ZHONG M C. Composition and mineralization of soil organic carbon pools in four single-tree species forest soils[J]. Journal of Forestry Research, 2016, 27(6): 1277?1285 doi: 10.1007/s11676-016-0244-z
[29]MERINO A, FONTURBEL M T, FERNáNDEZ C, et al. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate[J]. Science of the Total Environment, 2018, 627: 622?632 doi: 10.1016/j.scitotenv.2018.01.189
[30]陈杰. 炼山对闽北杉木人工林土壤理化性质的影响[J]. 热带林业, 2020, 48(2): 60?62 doi: 10.3969/j.issn.1672-0938.2020.02.015
CHEN J. Effects of slash burning on the soil properties of Chinese fir plantation in northern Fujian[J]. Tropical Forestry, 2020, 48(2): 60?62 doi: 10.3969/j.issn.1672-0938.2020.02.015
[31]赵明松, 张甘霖, 李德成, 等. 江苏省土壤有机质变异及其主要影响因素[J]. 生态学报, 2013, 33(16): 5058?5066 doi: 10.5846/stxb201205200749
ZHAO M S, ZHANG G L, LI D C, et al. Variability of soil organic matter and its main factors in Jiangsu Province[J]. Acta Ecologica Sinica, 2013, 33(16): 5058?5066 doi: 10.5846/stxb201205200749
[32]QIU H S, GE T D, LIU J Y, et al. Effects of biotic and abiotic factors on soil organic matter mineralization: Experiments and structural modeling analysis[J]. European Journal of Soil Biology, 2018, 84: 27?34 doi: 10.1016/j.ejsobi.2017.12.003
[33]林起财. 杉木成熟林不同密度条件下土壤肥力比较研究[J]. 农村经济与科技, 2020, 31(23): 100?102 doi: 10.3969/j.issn.1007-7103.2020.23.041
LIN Q C. Soil fertility of Chinese fir mature forest under different densities[J]. Rural Economy and Science-Technology, 2020, 31(23): 100?102 doi: 10.3969/j.issn.1007-7103.2020.23.041
[34]于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137?3143
YU T Y, SUN X S, SHI C R, et al. Advances in soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11): 3137?3143
[35]SHEN Q H, SUAREZ-ABELENDA M, CAMPS-ARBESTAIN M, et al. An investigation of organic matter quality and quantity in acid soils as influenced by soil type and land use[J]. Geoderma, 2018, 328: 44?55 doi: 10.1016/j.geoderma.2018.05.006
[36]LIU C C, LIU Y G, GUO K, et al. Effects of nitrogen, phosphorus and potassium addition on the productivity of a Karst grassland: Plant functional group and community perspectives[J]. Ecological Engineering, 2018, 117: 84?95 doi: 10.1016/j.ecoleng.2018.04.008
[37]TIESSEN H, CUEVAS E, CHACON P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371(6500): 783?785 doi: 10.1038/371783a0
[38]LI J C, RAMIREZ G H, KIANI M, et al. Soil organic matter dynamics in long-term temperate agroecosystems: rotation and nutrient addition effects[J]. Canadian Journal of Soil Science, 2018, 98(2): 232?245 doi: 10.1139/cjss-2017-0127
[39]PARSAPOUR M K, KOOCH Y, HOSSEINI S M, et al. Litter and topsoil in Alnus subcordata plantation on former degraded natural forest land: a synthesis of age-sequence[J]. Soil and Tillage Research, 2018, 179: 1?10 doi: 10.1016/j.still.2018.01.008

相关话题/土壤 林业 生态 广西 环境