删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同来源沼液对土壤微生物群落碳代谢的影响

本站小编 Free考研考试/2022-01-01

李钰飞1,,
许俊香1,
刘本生1,
孙钦平1,
李吉进1,
刘建斌1,
郎乾乾1,
孙仁华2,,,
靳红燕3
1.北京市农林科学院植物营养与资源研究所 北京 100097
2.农业农村部农业生态与资源保护总站 北京 100125
3.中国城市建设研究院有限公司西北分院 北京 100120
基金项目:北京市农林科学院青年科研基金项目(QNJJ202004, QNJJ202125, QNJJ201908)、奶牛产业技术体系北京市创新团队项目(BAIC06-2021)、农业生态环境保护专项(2110402)和北京市农林科学院农业科技示范推广项目(2018025)资助

详细信息
作者简介:李钰飞, 主要研究方向为土壤生态学。E-mail: liyf15@163.com
通讯作者:孙仁华, 主要研究方向为生态农业与农业废弃物资源化利用。E-mail: sunrh_abc@163.com
中图分类号:S154.36

计量

文章访问数:62
HTML全文浏览量:22
PDF下载量:26
被引次数:0
出版历程

收稿日期:2021-05-07
录用日期:2021-06-30
网络出版日期:2021-08-27
刊出日期:2021-11-10

Effects of different biogas slurries on soil microbial carbon metabolism

LI Yufei1,,
XU Junxiang1,
LIU Bensheng1,
SUN Qinping1,
LI Jijin1,
LIU Jianbin1,
LANG Qianqian1,
SUN Renhua2,,,
JIN Hongyan3
1. Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
3. Northwest Branch of China Urban Construction Design and Research Institute Co., Ltd., Beijing 100120, China
Funds:This study was supported by the Youth Foundation of Beijing Academy of Agriculture and Forestry Sciences (QNJJ202004, QNJJ202125, QNJJ201908), Beijing Innovation Team of Technology System in Dairy Industry (BAIC06-2021), the Special Project for Agricultural Ecological Environment Protection of China (2110402), and the Demonstration and Extension Project of Agricultural Science and Technology of Beijing Academy of Agriculture and Forestry Sciences (2018025)

More Information
Corresponding author:E-mail: sunrh_abc@163.com


摘要
HTML全文
(5)(3)
参考文献(49)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探索不同来源沼液对土壤微生物群落结构的影响, 本研究通过室内培养试验, 基于BIOLOG微平板培养方法, 对比了鸡粪源、猪粪源和牛粪源沼液在等氮条件下加入土壤后的微生物碳代谢特征。结果表明: 同无任何添加的对照相比, 不同来源的沼液对土壤有机质含量无显著影响, 但对无机氮、全氮、有效磷、速效钾、pH和电导率均有不同程度的提升效果。土壤微生物生物量碳在牛粪沼液处理中最高, 而猪粪沼液中微生物量碳则同对照相比显著降低(P<0.05)。鸡粪沼液引发了微生物最高的碳源利用强度, 而猪粪沼液则表现出抑制的趋势。微生物对碳水化合物的利用在鸡粪沼液处理中达到最高, 显著高于猪粪沼液(P<0.05)。对于氨基酸碳源的利用, 各沼液处理均表现出抑制的趋势, 但仅在猪粪沼液处理中达显著水平(P<0.05)。鸡粪沼液相比其他处理显著促进了微生物对羧酸的利用(P<0.05)。相比其他处理, 鸡粪沼液显著提高了土壤微生物的Shannon丰富度和Simpson优势度指数; McIntosh均一度指数的最高值也出现在鸡粪沼液处理, 但其仅显著高于猪粪沼液处理(P<0.05)。主成分分析显示猪粪沼液处理的微生物碳代谢群落同对照的差异最大, 相比而言牛粪和鸡粪沼液对微生物代谢群落的影响较小。总体而言, 不同来源沼液对土壤微生物碳代谢的影响存在差异, 其长期的效应有待进一步通过田间试验验证。
关键词:沼液/
微生物多样性/
BIOLOG/
微生物量碳氮/
群落代谢特征
Abstract:Biogas slurry is a high-quality organic fertilizer, but different types of biogas slurries have different physical and chemical properties. To explore the effect of biogas slurries derived from different livestock and poultry wastes on the soil microbial community structure, a culture experiment was conducted in the laboratory with the following treatments: soil amended with biogas slurry from chicken manure (FS), pig manure (PS), and cow manure (CS), and an unamended control (CK). The experiment was conducted with equal nitrogen input for each treatment. Samples were collected after incubation of soil for 60 days. Changes in the carbon metabolism of microbial communities subjected to different treatments were examined using the Biolog microplate culture method. Compared to the control, the biogas slurry treatments exerted no significant effect on soil organic matter content, but improved soil pH, electrical conductivity, and contents of inorganic nitrogen, total nitrogen, available phosphorus, and available potassium to varying degrees. Soil microbial biomass carbon was highest in CS, whereas that in PS was significantly lower than that in CK (P<0.05). The highest carbon source utilization intensity was found in FS, while that in CS was similar to that in CK, and lower in PS. Carbohydrate utilization by soil microbes was highest in FS, where it showed a significant increase with respect to that of PS (P<0.05). The utilization of amino acids was inhibited by all biogas slurry treatments; however, such inhibition was significant only in PS when compared with CK (P<0.05). Carboxylic acid utilization was significantly higher in FS than that in the other treatments (P<0.05). The various treatments exerted three distinct effects on amine utilization: on the one hand, FS promoted amine utilization, which showed values significantly higher than those in CK and PS (P<0.05); on the other hand, PS treatment did not significantly affect amine utilization when compared to that of CK; and finally, there was no significant difference in amine utilization between microbial communities subjected to CS and the other treatments. When compared with the other treatments, FS resulted in soil microbial communities with significantly higher values of both Shannon and Simpson indices (P<0.05). The highest value of the McIntosh index was observed in the FS-treated community, with a significant increase with respect to that of PS. Amino acid utilization was the parameter showing the strongest correlations (P<0.05 or P<0.01) with various soil chemical properties. Particularly, significant negative correlations were observed with nitrate nitrogen content, total nitrogen content, available potassium content, and electrical conductivity. In contrast, there were no significant correlations between the diversity indices and soil chemical properties. Soil microbial biomass carbon was negatively correlated with nitrate and available potassium contents (P<0.05). Conversely, soil microbial biomass nitrogen was negatively correlated with the pH and electrical conductivity (P<0.05). Principal component analysis of microbial carbon metabolism showed that the microbial community of PS was differed from that of CK, while CS and FS had relatively small effects on microbial community metabolism. In summary, biogas slurry derived from different livestock and poultry wastes exerted different effects on soil microbial carbon metabolism. Nevertheless, future experiments are required to verify the long-term effects of different biogas slurries in the field.
Key words:Biogas slurry/
Microbial diversity/
BIOLOG/
Microbial biomass carbon and nitrogen/
Community metabolic characteristics

HTML全文


图1不同来源沼液对土壤微生物生物量碳氮的影响
CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液。不同小写字母表示处理间差异显著(P<0.05)。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry. Different lowercase letters represent significant differences among treatments at P<0.05.
Figure1.Effects of different biogas slurry on contents of soil microbial biomass carbon and nitrogen


下载: 全尺寸图片幻灯片


图2不同来源沼液处理下土壤微生物群落培养过程中孔平均颜色变化率(AWCD)
CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry.
Figure2.Average well-color development (AWCD) changes of soil microbial community during the incubation under application of different biogas slurry


下载: 全尺寸图片幻灯片


图3不同来源沼液处理下土壤微生物群落对不同碳源的利用
CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液。Car: 碳水化合物; Ama: 氨基酸; Caa: 羧酸; Pol: 多聚物; Phc: 酚酸类; Ami: 胺类。同类碳源下不同小写字母表示处理间差异显著(P<0.05)。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry. Car: carbohydrate; Ama: amino acid; Caa: carboxylic acids; Pol: polymer; Phc: phenolic compounds; Ami: amine. Different lowercase letters under the same carbon source represent significant differences among treatments at P<0.05.
Figure3.Utilization of different groups of carbon sources by soil microbial community under application of different biogas slurry


下载: 全尺寸图片幻灯片


图4不同来源沼液处理对土壤微生物多样性指标的影响
CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液。不同小写字母表示处理间差异显著(P<0.05)。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry. Different lowercase letters represent significant differences among treatments at P<0.05.
Figure4.Effects of different biogas slurry on diversity indices of soil microbial community


下载: 全尺寸图片幻灯片


图5不同来源沼液处理下土壤微生物碳代谢群落主成分分析
CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry.
Figure5.Principal component analysis of soil microbial community based on various carbon sources under application of different biogas slurry


下载: 全尺寸图片幻灯片

表1不同来源沼液的化学性状
Table1.Chemical properties of different biogas slurry
NH4+-N
(mg·L?1)
NO3?-N
(mg·L?1)
总氮
Total N (mg·L?1)
总磷
Total P (mg·L?1)
pH电导率 EC
(mS·cm?1)
鸡粪沼液 Chicken manure biogas slurry3180.71.924716.9440.88.2126 190
猪粪沼液 Pig manure biogas slurry649.30.76751.8186.08.0510 142
牛粪沼液 Cow manure biogas slurry285.60.351179.256.97.899160


下载: 导出CSV
表2不同来源沼液对土壤理化性状的影响
Table2.Effects of different biogas slurry on soil physical and chemical properties
处理
Treatment
NH4+-N
(mg·kg?1)
NO3?-N
(mg·kg?1)
OM
(g·kg?1)
TN
(g·kg?1)
AP
(mg·kg?1)
AK
(mg·kg?1)
pHEC
(μs·cm?1)
CK1.06ab44.3d18.66a1.08b71.64c172.4d8.18b166.1c
CS0.88b101.5c18.67a1.21a75.31bc249.9b8.44a376.3b
FS1.05ab164.1b18.42a1.22a79.31a218.1c8.31ab363.7b
PS1.63a207.5a18.79a1.25a75.82ab317.8a8.42a515.7a
  CK: 对照; CS: 牛粪沼液; FS: 鸡粪沼液; PS: 猪粪沼液; OM: 有机质; TN: 全氮; AP: 有效磷; AK: 速效钾; EC: 电导率。同列不同小写字母表示处理间差异显著(P<0.05)。CK: control; CS: cow manure biogas slurry; FS: chicken manure biogas slurry; PS: pig manure biogas slurry; OM: organic matter; TN: total N; AP: available P; AK: available K; EC: electrical conductivity. Different lowercase letters in the same column represent significant differences among different treatments at P<0.05.


下载: 导出CSV
表3土壤微生物指标与土壤化学性状相关性分析
Table3.Correlation analysis between soil microbial indices and soil chemical properties
NH4+-NNO3?-NOMTNAPAKpHEC
Car?0.370?0.1550.384?0.0150.249?0.501?0.240?0.300
Ama?0.298?0.620*0.375?0.582*?0.246?0.709**?0.328?0.688*
Caa?0.1990.078?0.1580.1280.524?0.318?0.374?0.106
Pol?0.292?0.0070.1340.1810.589*0.0570.1620.070
Phc?0.1830.5650.0360.4320.4040.1850.0060.311
Ami?0.3140.131?0.0400.4740.581*?0.083?0.0440.043
Shannon?0.5150.0370.2080.1140.487?0.394?0.007?0.118
McIntosh?0.366?0.1500.2480.0100.378?0.446?0.331?0.304
Simpson?0.514?0.0260.2090.1010.467?0.4170.021?0.156
MBC?0.549?0.641*0.348?0.352?0.488?0.607*?0.142?0.531
MBN?0.001?0.456?0.165?0.534?0.311?0.553?0.600*?0.592*
  OM: 有机质; TN: 全氮; AP: 有效磷; AK: 速效钾; EC: 电导率。Car: 碳水化合物; Ama: 氨基酸; Caa: 羧酸; Pol: 多聚物; Phc: 酚酸类; Ami: 胺类; MBC: 微生物生物量碳; MBN: 微生物生物量氮。*表示显著相关(P<0.05), **表示极显著相关(P<0.01)。OM: organic matter; TN: total N; AP: available P; AK: available K; EC: electrical conductivity. Car: carbohydrate; Ama: amino acid; Caa: carboxylic acids; Pol: polymer; Phc: phenolic compounds; Ami: amine; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen. * indicates significant correlation at P<0.05, and ** indicates significant correlation at P<0.01 level.


下载: 导出CSV

参考文献(49)
[1]张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6): 822?829 doi: 10.3321/j.issn:1008-505X.2005.06.019
ZHANG S Q, ZHANG F D, LIU X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizing Science, 2005, 11(6): 822?829 doi: 10.3321/j.issn:1008-505X.2005.06.019
[2]钟珍梅, 宋亚娜, 黄秀声, 等. 沼液对狼尾草地土壤微生物群落的影响[J]. 草地学报, 2016, 24(1): 54?60
ZHONG Z M, SONG Y N, HUANG X S, et al. Effects of biogas slurry application on the soil microorganisms of P. americanum × P. purpureum grassland[J]. Acta Agrestia Sinica, 2016, 24(1): 54?60
[3]CAO Y, WANG J D, WU H S, et al. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression[J]. Applied Soil Ecology, 2016, 107: 116?123 doi: 10.1016/j.apsoil.2016.05.010
[4]M?LLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review[J]. Agronomy for Sustainable Development, 2015, 35(3): 1021?1041
[5]NIYUNGEKO C, LIANG X Q, LIU C L, et al. Effect of biogas slurry application on soil nutrients, phosphomonoesterase activities, and phosphorus species distribution[J]. Journal of Soils and Sediments, 2020, 20(2): 900?910
[6]TANG Y F, LUO L M, CARSWELL A, et al. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation[J]. Science of the Total Environment, 2021, 757: 143786
[7]ODLARE M, ARTHURSON V, PELL M, et al. Land application of organic waste — Effects on the soil ecosystem[J]. Applied Energy, 2011, 88(6): 2210?2218 doi: 10.1016/j.apenergy.2010.12.043
[8]XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5): 2534?2542 doi: 10.1007/s11368-019-02258-x
[9]MIN Y Y, TOYOTA K, SATO E, et al. Effects of anaerobically digested slurry on Meloidogyne incognita and Pratylenchus penetrans in tomato and radish production[J]. Applied and Environmental Soil Science, 2011, 2011: 1?6
[10]李钰飞, 刘本生, 许俊香, 等. 沼液淹没土壤抑制根结线虫及对土壤线虫群落的影响[J]. 中国生态农业学报(中英文), 2020, 28(8): 1249?1257
LI Y F, LIU B S, XU J X, et al. Effects of soil flooding of biogas slurry on root-knot nematode (Meloidogyne spp.) and soil nematode community[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1249?1257
[11]MORAL R, MORENO-CASELLES J, PEREZ-MURCIA M D, et al. Characterisation of the organic matter pool in manures[J]. Bioresource Technology, 2005, 96(2): 153?158 doi: 10.1016/j.biortech.2004.05.003
[12]ARRIAGA F J, LOWERY B. Soil physical properties and crop productivity of an eroded soil amended with cattle manure[J]. Soil Science, 2003, 168(12): 888?899
[13]NYAMANGARA J, GOTOSA J, MPOFU S E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe[J]. Soil and Tillage Research, 2001, 62(3/4): 157?162
[14]HAFEZ A R. Comparative changes in soil-physical properties induced by admixtures of manures from various domestic animals[J]. Soil Science, 1974, 118(1): 53?59
[15]ABUBAKER J, CEDERLUND H, ARTHURSON V, et al. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry[J]. Applied Soil Ecology, 2013, 72: 171?180
[16]柯蓝婷, 王海涛, 王远鹏, 等. 不同来源家庭户用沼气池沼液成分分析及风险评价[J]. 化工学报, 2014, 65(5): 1840?1847
KE L T, WANG H T, WANG Y P, et al. Component analysis and risk assessment of anaerobically digested slurry from households in China[J]. CIESC Journal, 2014, 65(5): 1840?1847
[17]赵凤莲, 孙钦平, 李吉进, 等. 不同沼肥对油菜产量、品质及氮素利用效率的影响[J]. 水土保持学报, 2010, 24(3): 127?130
ZHAO F L, SUN Q P, LI J J, et al. Effects of different biogas fertilizers on yield, quality and nitrogen use efficiency of the rape[J]. Journal of Soil and Water Conservation, 2010, 24(3): 127?130
[18]曹志平. 生态农业未来的发展方向[J]. 中国生态农业学报, 2013, 21(1): 29?38
CAO Z P. Future orientation of ecological agriculture[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 29?38
[19]李钰飞, 李季, 李吉进, 等. 温室不同管理模式对土壤微生物生物量碳和原生动物丰度的影响[J]. 土壤, 2018, 50(4): 696?704
LI Y F, LI J, LI J J, et al. Effects of different management practices on microbial biomass carbon and protozoa abundance under greenhouse conditions[J]. Soils, 2018, 50(4): 696?704
[20]LI Y F, CHEN Y F, LI J, et al. Organic management practices enhance soil food web biomass and complexity under greenhouse conditions[J]. Applied Soil Ecology, 2021, 167: 104010
[21]贺纪正, 陆雅海, 傅伯杰. 土壤生物学前沿[M]. 北京: 科学出版社, 2015: 29–50
HE J Z, LU Y H, FU B J. Frontier of Soil Biology[M]. Beijing: Science Press, 2015: 29–50
[22]WINDING A, HUND-RINKE K, RUTGERS M. The use of microorganisms in ecological soil classification and assessment concepts[J]. Ecotoxicology and Environmental Safety, 2005, 62(2): 230?248
[23]WENTZEL S, JOERGENSEN R G. Effects of biogas and raw slurries on grass growth and soil microbial indices[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(2): 215?222
[24]黄继川, 徐培智, 彭智平, 等. 基于稻田土壤肥力及生物学活性的沼液适宜用量研究[J]. 植物营养与肥料学报, 2016, 22(2): 362?371
HUANG J C, XU P Z, PENG Z P, et al. Biogas slurry use amount for suitable soil nutrition and biodiversity in paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 362?371
[25]郑学博, 樊剑波, 崔键, 等. 沼液还田对旱地红壤微生物群落代谢与多样性的影响[J]. 生态学报, 2016, 36(18): 5865?5875
ZHENG X B, FAN J B, CUI J, et al. Analysis on metabolic characteristics and functional diversity of soil edaphon communities in upland red soil under biogas slurry application[J]. Acta Ecologica Sinica, 2016, 36(18): 5865?5875
[26]郑学博, 樊剑波, 何园球, 等. 沼液化肥全氮配比对土壤微生物及酶活性的影响[J]. 农业工程学报, 2015, 31(19): 142?150
ZHENG X B, FAN J B, HE Y Q, et al. Effect of total nitrogen ratio of biogas slurry/chemical fertilizer on microflora and enzyme activities of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 142?150
[27]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 25–114
BAO S D. Soil Agro-chemistrical Analysis[M]. Beijing: China Agriculture Press, 2000: 25–114
[28]吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006: 54–78
WU J S, LIN Q M, HUANG Q Y, et al. Soil Microbial Biomass — Methods and Application[M]. Beijing: China Meteorological Press, 2006: 54–78
[29]林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010: 170–172
LIN X G. Principles and Methods of Soil Microbiology Research[M]. Beijing: High Education Press, 2010: 170–172
[30]甄丽莎, 谷洁, 胡婷, 等. 黄土高原石油污染土壤微生物群落结构及其代谢特征[J]. 生态学报, 2015, 35(17): 5703?5710
ZHEN L S, GU J, HU T, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(17): 5703?5710
[31]靳红梅, 常志州, 叶小梅, 等. 江苏省大型沼气工程沼液理化特性分析[J]. 农业工程学报, 2011, 27(1): 291?296
JIN H M, CHANG Z Z, YE X M, et al. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 291?296
[32]靳红梅, 付广青, 常志州, 等. 猪、牛粪厌氧发酵中氮素形态转化及其在沼液和沼渣中的分布[J]. 农业工程学报, 2012, 28(21): 208?214
JIN H M, FU G Q, CHANG Z Z, et al. Distribution of nitrogen in liquid and solid fraction of pig and dairy manure in anaerobic digestion reactor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(21): 208?214
[33]王文静, 魏静, 马文奇, 等. 氮肥用量和秸秆根茬碳投入对黄淮海平原典型农田土壤有机质积累的影响[J]. 生态学报, 2010, 30(13): 3591?3598
WANG W J, WEI J, MA W Q, et al. Effect of nitrogen amendment and straw-stubble input on accumulation of soil organic matter in typical farmlands of Huang-Huai-Hai Plain[J]. Acta Ecologica Sinica, 2010, 30(13): 3591?3598
[34]JOHANSEN A, CARTER M S, JENSEN E S, et al. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O[J]. Applied Soil Ecology, 2013, 63: 36?44
[35]徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1): 83?90
XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping[J]. Acta Pedologica Sinica, 2002, 39(1): 83?90
[36]胡诚, 曹志平, 叶钟年, 等. 不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J]. 生态学报, 2006, 26(3): 808?814
HU C, CAO Z P, YE Z N, et al. Impact of soil fertility maintaining practice on soil microbial biomass carbon in low production agro-ecosystem in Northern China[J]. Acta Ecologica Sinica, 2006, 26(3): 808?814
[37]龙攀, 隋鹏, 高旺盛, 等. 不同有机物料还田对农田土壤有机碳以及微生物量碳的影响[J]. 中国农业大学学报, 2015, 20(3): 153?160
LONG P, SUI P, GAO W S, et al. Effects of agricultural organic wastes incorporation on soil organic carbon and microbial carbon[J]. Journal of China Agricultural University, 2015, 20(3): 153?160
[38]王继红, 刘景双, 于君宝, 等. 氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J]. 水土保持学报, 2004, 18(1): 35?38
WANG J H, LIU J S, YU J B, et al. Effect of fertilizing N and P on soil microbial biomass carbon and nitrogen of black soil corn agroecosystem[J]. Journal of Soil Water Conservation, 2004, 18(1): 35?38
[39]耿晨光, 段婧婧, 李汛, 等. 沼液的园林地消解处理利用及其对土壤微生物碳、氮与酶活性的影响[J]. 农业环境科学学报, 2012, 31(10): 1965?1971
GENG C G, DUAN J J, LI X, et al. Short-term effects of biogas slurry application to garden land on soil microbial biomass carbon & nitrogen and soil enzymes[J]. Journal of Agro-Environment Science, 2012, 31(10): 1965?1971
[40]张红, 王桂良. 沼液和氮肥配施对菜田土壤微生物生物量和活性的影响[J]. 安徽农业科学, 2011, 39(27): 16601?16603, 16723
ZHANG H, WANG G L. Effects of biogas slurry combinated with nitrogen fertilizer on soil microbial biomass and enzyme activities[J]. Journal of Anhui Agricultural Sciences, 2011, 39(27): 16601?16603, 16723
[41]曹云, 常志州, 马艳, 等. 沼液施用对辣椒疫病的防治效果及对土壤生物学特性的影响[J]. 中国农业科学, 2013, 46(3): 507?516
CAO Y, CHANG Z Z, MA Y, et al. Effects of application of anaerobically digested slurry on suppression of pepper (Capsicum frutescens L.) blight and soil biological characteristics[J]. Scientia Agricultura Sinica, 2013, 46(3): 507?516
[42]王强, 戴九兰, 吴大千, 等. 微生物生态研究中基于BIOLOG方法的数据分析[J]. 生态学报, 2010, 30(3): 817?823
WANG Q, DAI J L, WU D Q, et al. Statistical analysis of data from BIOLOG method in the study of microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(3): 817?823
[43]郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41(3): 456?461
ZHENG H, OUYANG Z Y, FANG Z G, et al. Application of biolog to study on soil microbial community functional diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456?461
[44]GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351?2359
[45]孙波, 赵其国, 张桃林, 等. 土壤质量与持续环境Ⅲ. 土壤质量评价的生物学指标[J]. 土壤, 1997, 29(5): 225?234
SUN B, ZHAO Q G, ZHANG T L, et al. Soil quality and sustainable environment:Ⅲ. Biological indicators for soil quality assessment[J]. Soils, 1997, 29(5): 225?234
[46]HAACK S K, GARCHOW H, KLUG M J, et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology, 1995, 61(4): 1458?1468
[47]NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2003, 54(4): 655?670
[48]曹云, 马艳, 吴华山, 等. 沼液处理对土壤微生物性状及西瓜枯萎病发生的影响[J]. 中国土壤与肥料, 2016, (1): 34?41
CAO Y, MA Y, WU H S, et al. Suppression of Fusarium wilt of watermelon by biogas slurry application and its effect on soil microbiological characteristics[J]. Soil and Fertilizer Sciences in China, 2016, (1): 34?41
[49]胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161?1167
HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(Z1): 1161?1167

相关话题/土壤 微生物 生态 北京 图片