李雅颖2,
葛超荣1,,,
张迎迎2,
姚槐应2
1.武汉工程大学 武汉 430074
2.中国科学院城市环境研究所 厦门 361021
基金项目:国家重点研发计划项目(2017YFD0200102)和国家自然科学基金项目(41877051)资助
详细信息
作者简介:胡梦媛, 主要研究方向为土壤氮素循环。E-mail: hmy.222@foxmail.com
通讯作者:葛超荣, 主要研究方向为环境微生物。E-mail: chaorongge@wit.edu.cn
中图分类号:S144.5计量
文章访问数:182
HTML全文浏览量:42
PDF下载量:82
被引次数:0
出版历程
收稿日期:2021-05-25
录用日期:2021-06-25
网络出版日期:2021-08-21
刊出日期:2021-11-10
Research status and application prospects of combined nitrogen fixation in gramineous plants
HU Mengyuan1, 2,,LI Yaying2,
GE Chaorong1,,,
ZHANG Yingying2,
YAO Huaiying2
1. Wuhan Institute of Technology, Wuhan 430074, China
2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Funds:The study was supported by the National Key Research and Development Project of China (2017YFD0200102) and the National Natural Science Foundation of China (41877051)
More Information
Corresponding author:E-mail: chaorongge@wit.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:氮是限制农业生产的最重要因素之一。随着人工固氮技术的发展, 氮肥的施用在提高作物产量、解决人类温饱问题的同时, 导致了土壤板结、酸化、氮素流失及温室气体排放(N2O)等环境问题。与人工合成氨相比, 生物固氮是一种绿色经济的固氮方式, 其包括共生固氮和非共生(自生固氮及联合固氮)固氮, 且每年固定的氮可占总固定量的50%以上。与共生固氮相比, 非共生固氮存在范围广, 如甘蔗、水稻、玉米和小麦等禾本科作物均能进行非共生固氮(联合固氮)。本文主要从禾本科植物的联合固氮菌种类及其作用机理、固氮活性及调控方式以及联合固氮菌的资源及应用3个方面进行综述, 发现相比较共生固氮而言, 联合固氮菌易受到土著微生物、氮素水平等环境因素影响, 其研究难度更大, 需要筛选纯化更多的联合固氮菌, 为其固氮机制研究提供良好材料; 氮、磷、钼、铁等肥料的适量添加可有效促进固氮菌的固氮效率; 固氮菌不仅可以提高土壤固氮量, 而且有利于植物根系激素调节, 从而增加植物抗病抗逆能力, 促进植物更健康的生长。本文最后对禾本科植物联合固氮的农艺管理措施及固氮菌剂的实际应用方面做了展望, 以期为提高禾本科植物联合固氮效率及推动生物固氮菌在农业生产中的应用提供理论依据。
关键词:禾本科植物/
联合固氮/
固氮菌种类/
固氮活性/
固氮菌应用
Abstract:Nitrogen is one of the most important factors restricting agricultural production. With the development of artificial nitrogen fixation technology, the application of nitrogen fertilizers can increase crop yields and solve problems related to the fulfilment of the basic human needs of food and clothing. However, it has also caused environmental problems, such as soil compaction, acidification, nitrogen loss, and greenhouse gas emissions (e.g., nitrous oxide, N2O). Compared with synthetic ammonia, biological nitrogen fixation is a green and economical nitrogen fixation method, which entails symbiotic nitrogen fixation and non-symbiotic nitrogen fixation (autogenous nitrogen fixation and combined nitrogen fixation, respectively). Annually, biologically fixed nitrogen can account for more than 50% of the total fixed amount. Compared with symbiotic nitrogen fixation, non-symbiotic nitrogen fixation exists in many plants, for example, sugarcane, rice, maize, wheat, and other gramineous crops that carry out non-symbiotic nitrogen fixation (combined nitrogen fixation). This article reviewed the species of combined nitrogen-fixing bacteria in gramineous plants and their mechanism of action and nitrogen-fixing activity and regulation methods, as well as the resources and applications of these combined nitrogen-fixing bacteria. Compared with symbiotic nitrogen fixation, combined nitrogen-fixing bacteria are more vulnerable to indigenous microorganisms. Research on combined nitrogen-fixing bacteria is more difficult owing to the influence of environmental factors, such as nitrogen levels. It is necessary to screen and purify more combined nitrogen-fixing bacteria to provide optimum materials for research into the nitrogen fixation mechanism. Appropriate levels of nitrogen, phosphorus, molybdenum, iron, and other fertilizers can promote the nitrogen fixation efficiency of bacteria. Nitrogen-fixing bacteria not only increase the extent of soil nitrogen fixation but also facilitate the regulation of plant root hormones, thereby increasing plant disease resistance and stress resistance, promoting healthier plant growth. Finally, agronomic management measures for combined nitrogen fixation through gramineous plants and the practical application of the nitrogen-fixing bacteria are proposed to provide a theoretical basis for improving the efficiency of combined nitrogen fixation through gramineous plants and to promote the application of the nitrogen-fixing bacteria in agricultural production.
Key words:Gramineae/
Combined nitrogen fixation/
Species of nitrogen-fixing bacteria/
Nitrogen fixation activity/
Application of nitrogen-fixing bacteria
HTML全文
图1根瘤菌固氮系统
A为固氮酶结构图; B为慢生根瘤菌属在非豆科植物根际固氮方式。Figure A shows the structure of nitrogenase; and Figure B shows the nitrogen fixation mode of Bradyrhizobium spp. in the rhizosphere of non-leguminous plants.
Figure1.Nitrogen fixation system of rhizobia
下载: 全尺寸图片幻灯片
表1禾本科植物中联合固氮菌种类
Table1.Species of associated nitrogen-fixing bacteria in grasses
宿主 Parasitifer | 联合固氮菌种类 Combined nitrogen-fixing bacteria species | 参考文献 Reference |
甘蔗 Sugarcane | 伯克霍尔德氏菌属、肠杆菌属、假单胞菌属、泛菌属、寡养单胞菌、芽孢杆菌属 Burkholderia sp., Enterobacter sp., Pseudomonas sp., Pantoea sp., Stenotrophomonas sp., Bacillus sp. | [13] |
克雷伯氏菌属、柠檬酸杆菌属 Klebisiella sp., Citrobacter sp. | [26] | |
草螺菌属、固氮螺菌属、葡糖醋杆菌 Herbaspirillum sp., Azospirillum sp., Gluconacetobacter sp. | [27] | |
链霉菌属、小双孢菌属、马杜拉放线菌属、不动杆菌属、小单胞菌属、类芽孢杆菌、葡萄球菌、赖氨酸芽孢杆菌属、微球菌 Streptomyces, Microbispora, Actinomadura, Acinetobacter, Micromonospora, Paenibacillus, Staphylococcus, Lysinibacillus, Micrococcus | [14] | |
水稻 Rice | 鞘丝藻属、念珠藻属、蓝丝菌属、固氮螺菌属、慢生根瘤菌属、甲基孢囊菌属、地杆菌属、脱硫叶菌属、脱硫弧菌属 Leptolyngbya, Nostoc, Cyanothece, Azospirillum, Bradyrhizobium sp., Methylocystis, Geobacter, Desulfobulbus, Desulfovibrio | [28] |
甲基弯曲菌、根瘤菌属 Methylosinus trichosporium, Rhizobium sp. | [29] | |
玉米 Maize | 短小芽孢杆菌、枯草芽孢杆菌、泛菌属、微杆菌属、不动杆菌属、红球菌属、微球菌属、杆菌属、棒形杆菌属、 短小杆菌属、肠杆菌属、金黄杆菌属 Bacillus pumilus, Bacillus subtilis, Pantoea, Microbacterium, Acinetobacter, Rhodococcus, Micrococcus, Brachybacterium, Clavibacter, Curtobacterium, Enterobacter, Chryseobacterium | [23] |
小麦 Wheat | 慢生根瘤菌属、伯克霍尔德氏菌属、地杆菌属、脱硫杆菌属、太阳杆菌属、磁螺菌属、甲基球菌属、 固氮弧菌属、解纤维素菌属 Bradyrhizobium, Burkholderia, Geobacter, Desulfobacter, Heliobacterium, Magnetospirillum, Methylococcus, Azoarcus, Cellulosilyticum | [21] |
下载: 导出CSV
表2施加固氮菌对禾本科植物固氮酶活性或产量的影响
Table2.Effects of nitrogen-fixing bacteria on nitrogenase activity or yield of Poaceae plants
植株 Plant | 施加菌株 Bacteria | 固氮酶活性提高率 Increase rate of nitrogenase activity (%) | 作物产量提高率 Increase rate of crop yield (%) | 参考文献 Reference |
甘蔗 Sugarcane | 巨大芽孢杆菌、蕈状芽孢杆菌 Bacillus megaterium, Bacillus mycoides | 21~35 | — | [60] |
枯草芽孢杆菌B9 Bacillus subtilis B9 | — | 29.84~95.51 | [61] | |
水稻 Rice | 固氮鱼腥藻 Anabaena azotica (FACHB-119) | — | 25 | [62] |
固氮菌 Azotobacter sp. strain Avi2 (MCC 3432) | — | 6.3~10.7 | [63] | |
玉米 Maize | 多粘芽孢杆菌 Paenibacillus triticisoli BJ-18 | 12.9~36.4 | — | [65] |
固氮螺菌属 Azospirillum brasilense Ab-V5和Ab-V6 | — | 27 | [66] | |
多粘芽孢杆菌 Paenibacillus triticisoli BJ-18 | — | 16.9 | [36] | |
小麦 Wheat | 溶磷菌、内生固氮菌、假单胞菌 Paenibacillus sp. B1, Klebsiella, Pseudomonas | 26~163 | — | [56] |
巴西固氮螺菌Ab-V5和Ab-V6 Azospirillum brasilense Ab-V5 and Ab-V6 | — | 31 | [66] |
下载: 导出CSV
参考文献
[1] | DALTON H. The fundamentals of nitrogen fixation[J]. Febs Letters, 1983, 162(1): 207?207 doi: 10.1016/0014-5793(83)81085-0 |
[2] | FOWLER D, PYLE J A, RAVEN J A, et al. The global nitrogen cycle in the twenty-first century: introduction[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130165 doi: 10.1098/rstb.2013.0165 |
[3] | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1/2): 1?18 |
[4] | SIMONSEN A K, DINNAGE R, BARRETT L G, et al. Symbiosis limits establishment of legumes outside their native range at a global scale[J]. Nature Communications, 2017, 8: 14790 doi: 10.1038/ncomms14790 |
[5] | 李旭, 董炜灵, 宋阿琳, 等. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980?991 doi: 10.3864/j.issn.0578-1752.2021.05.010 LI X, DONG W L, SONG A L, et al. Effects of straw addition on soil biological N2-fixation rate and diazotroph community properties[J]. Scientia Agricultura Sinica, 2021, 54(5): 980?991 doi: 10.3864/j.issn.0578-1752.2021.05.010 |
[6] | 徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展[J]. 应用生态学报, 2017, 28(10): 3440?3450 XU P X, HAN L L, HE J Z, et al. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3440?3450 |
[7] | SEARCHINGER T, WAITE R, HANSON C, et al. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050[C/OL]//Final Report, 2019: 42. [2014-01-01] https://www.researchgate.net/profile/Richard-Waite-2/publication/280755107_Creating_a_sustainable_food_future_A_menu_of_solutions_to_sustainably_feed_more_than_9_billion_people_by_2050_World_resources_report_2013-14_interim_findings/links/55f18e3008aedecb69005914/Creating-a-sustainable-food-future-A-menu-of-solutions-to-sustainably-feed-more-than-9-billion-people-by-2050-World-resources-report-2013-14-interim-findings.pdf |
[8] | BALDANI J, CARUSO L, BALDANI V L D, et al. Recent advances in BNF with non-legume plants[J]. Soil Biology and Biochemistry, 1997, 29(5/6): 911?922 |
[9] | FRANCHE C, LINDSTR? M K, ELMERICH C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants[J]. Plant and Soil, 2009, 321(1/2): 35?59 |
[10] | DÖBEREINER J, DAY J M, NEWTON W E, et al. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites[EB/OL]. 1976 |
[11] | 张丽梅, 方萍, 朱日清. 禾本科植物联合固氮研究及其应用现状展望[J]. 应用生态学报, 2004, 15(9): 1650?1654 doi: 10.3321/j.issn:1001-9332.2004.09.032 ZHANG L M, FANG P, ZHU R Q. Recent advances in research and application of associated nitrogen-fixation with graminaceous plants[J]. Chinese Journal of Applied Ecology, 2004, 15(9): 1650?1654 doi: 10.3321/j.issn:1001-9332.2004.09.032 |
[12] | KENNEDY I R, ISLAM N. The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review[J]. Australian Journal of Experimental Agriculture, 2001, 41(3): 447?457 doi: 10.1071/EA00081 |
[13] | LIMA D R M, SANTOS I B, OLIVEIRA J T C, et al. Genetic diversity of N-fixing and plant growth-promoting bacterial community in different sugarcane genotypes, association habitat and phenological phase of the crop[J]. Archives of Microbiology, 2021, 203(3): 1089?1105 doi: 10.1007/s00203-020-02103-7 |
[14] | KRUASUWAN W, THAMCHAIPENET A. Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes[J]. Journal of Plant Growth Regulation, 2016, 35(4): 1074?1087 doi: 10.1007/s00344-016-9604-3 |
[15] | CAVALCANTE V A, DOBEREINER J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane[J]. Plant and Soil, 1988, 108(1): 23?31 doi: 10.1007/BF02370096 |
[16] | CHAKRABORTY A, ISLAM E. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season[J]. Environmental Science and Pollution Research, 2018, 25(5): 4951?4962 doi: 10.1007/s11356-017-0858-5 |
[17] | WU C F, WEI X M, HU Z Y, et al. Diazotrophic community variation underlies differences in nitrogen fixation potential in paddy soils across a climatic gradient in China[J]. Microbial Ecology, 2021, 81(2): 425?436 doi: 10.1007/s00248-020-01591-w |
[18] | MA J, BEI Q C, WANG X J, et al. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system[J]. Science of the Total Environment, 2019, 649: 686?694 doi: 10.1016/j.scitotenv.2018.08.318 |
[19] | MA H L, MAO P P, IMRAN S, et al. Rice planting increases biological nitrogen fixation in acidic soil and the influence of light and flood layer thickness[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 341?348 doi: 10.1007/s42729-020-00364-1 |
[20] | LI Y, LI T, ZHAO D Q, et al. Different tillage practices change assembly, composition, and co-occurrence patterns of wheat rhizosphere diazotrophs[J]. Science of the Total Environment, 2021, 767: 144252 doi: 10.1016/j.scitotenv.2020.144252 |
[21] | LIU Y, GUO Z H, XUE C, et al. Changes in N2-fixation activity, abundance and composition of diazotrophic communities in a wheat field under elevated CO2 and canopy warming[J]. Applied Soil Ecology, 2021, 165: 104017 doi: 10.1016/j.apsoil.2021.104017 |
[22] | VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota[J]. PLoS Biology, 2018, 16(8): e2006352 doi: 10.1371/journal.pbio.2006352 |
[23] | ABADI V, SEPEHRI M, RAHHMANI H A, et al. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize[J]. Journal of Applied Microbiology, 2021, 131(2): 898?912 |
[24] | COMPANT S, SAMAD A, FAIST H, et al. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application[J]. Journal of Advanced Research, 2019, 19: 29?37 doi: 10.1016/j.jare.2019.03.004 |
[25] | 谢祖彬, 张燕辉, 王慧. 稻田生物固氮研究进展及方向[J]. 土壤学报, 2020, 57(3): 540?546 doi: 10.11766/trxb201912060662 XIE Z B, ZHANG Y H, WANG H. Advances and perspectives in paddy biological nitrogen fixation[J]. Acta Pedologica Sinica, 2020, 57(3): 540?546 doi: 10.11766/trxb201912060662 |
[26] | MAGNANI G S, DIDONET C M, CRUZ L M, et al. Diversity of endophytic bacteria in Brazilian sugarcane[J]. Genetics and Molecular Research, 2010, 9(1): 250?258 doi: 10.4238/vol9-1gmr703 |
[27] | SAHARAN B S, NEHRA V. Plant growth promoting rhizobacteria: a critical review[J]. Life Sciences and Medicine Research, 2011, 21(1): 1?30 |
[28] | MA J, BEI Q C, WANG X J, et al. Paddy system with a hybrid rice enhances cyanobacteria Nostoc and increases N2 fixation[J]. Pedosphere, 2019, 29(3): 374?387 doi: 10.1016/S1002-0160(19)60809-X |
[29] | LIU J M, HAN J J, ZHU C W, et al. Elevated atmospheric CO2 and nitrogen fertilization affect the abundance and community structure of rice root-associated nitrogen-fixing bacteria[J]. Frontiers in Microbiology, 2021, 12: 628108 doi: 10.3389/fmicb.2021.628108 |
[30] | BELLENGER J P, XU Y, ZHANG X, et al. Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils[J]. Soil Biology and Biochemistry, 2014, 69: 413?420 doi: 10.1016/j.soilbio.2013.11.015 |
[31] | SICKERMAN N S, RETTBERG L A, LEE C C, et al. Cluster assembly in nitrogenase[J]. Essays in Biochemistry, 2017, 61(2): 271?279 doi: 10.1042/EBC20160071 |
[32] | 荆晓姝, 丁燕, 韩晓梅, 等. 联合固氮菌的合成生物学研究进展[J]. 微生物学报, 2021. DOI: 10.13343/j.cnko.wsxb. 20200796 JING X S, DING Y, HAN X M, et al. Advances in synthetic biology of associated nitrogen-fixation bacteria[J]. Acta Microbiologica Sinica, 2021. DOI: 10.13343/j.cnko.wsxb. 20200796 |
[33] | HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage[J]. Chemical Reviews, 2014, 114(8): 4041?4062 doi: 10.1021/cr400641x |
[34] | HU Y L, RIBBE M W. Biosynthesis of nitrogenase FeMoco[J]. Coordination Chemistry Reviews, 2011, 255(9/10): 1218?1224 |
[35] | YONEYAMA T, TERAKADO-TONOOKA J, BAO Z, et al. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants[J]. Plants, 2019, 8(10): 408?429 doi: 10.3390/plants8100408 |
[36] | THAWEENUT N, HACHISUKA Y, ANDO S, et al. Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia[J]. Plant and Soil, 2011, 338(1/2): 435?449 |
[37] | YONEYAMA T, TERAKADO-TONOOKA J, MINAMISAWA K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis[J]. Soil Science and Plant Nutrition, 2017, 63(6): 578?590 doi: 10.1080/00380768.2017.1407625 |
[38] | PAGAN J D, CHILD J J, SCOWCROFT W R, et al. Nitrogen fixation by Rhizobium cultured on a defined medium[J]. Nature, 1975, 256(5516): 406?407 doi: 10.1038/256406a0 |
[39] | KURZ W G W, LARUE T A. Nitrogenase activity in rhizobia in absence of plant host[J]. Nature, 1975, 256(5516): 407?409 doi: 10.1038/256407a0 |
[40] | LI Y B, WANG M Y, CHEN S F. Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions[J]. Biology and Fertility of Soils, 2021, 57(3): 347?362 doi: 10.1007/s00374-020-01528-y |
[41] | GREETATORN T, HASHIMOTO S, MAEDA T, et al. Mechanisms of rice endophytic bradyrhizobial cell differentiation and its role in nitrogen fixation[J]. Microbes and Environments, 2020. DOI: 10.1264/jsme2.me20049 |
[42] | LIU X Y, LIU C, GAO W H, et al. Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil[J]. Science of the Total Environment, 2019, 688: 944?951 doi: 10.1016/j.scitotenv.2019.06.293 |
[43] | HU X J, LIU J J, ZHU P, et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China[J]. Journal of Soils and Sediments, 2018, 18(5): 2053?2062 doi: 10.1007/s11368-018-1975-6 |
[44] | FENG M M, ADAMS J M, FAN K K, et al. Long-term fertilization influences community assembly processes of soil diazotrophs[J]. Soil Biology and Biochemistry, 2018, 126: 151?158 doi: 10.1016/j.soilbio.2018.08.021 |
[45] | MENG X T, LIAO H K, FAN H X, et al. The geographical scale dependence of diazotroph assembly and activity: Effect of a decade fertilization[J]. Geoderma, 2021, 386: 114923 doi: 10.1016/j.geoderma.2020.114923 |
[46] | FAN K K, DELGADO-BAQUERIZO M, GUO X S, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143?153 doi: 10.1186/s40168-019-0757-8 |
[47] | WANG C, ZHENG M M, SONG W F, et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in Southern China[J]. Soil Biology and Biochemistry, 2017, 113: 240?249 doi: 10.1016/j.soilbio.2017.06.019 |
[48] | WANG J L, LI Q K, SHEN C C, et al. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment[J]. Land Degradation & Development, 2021, 32(1): 420?429 |
[49] | PEREIRA W, SOUSA J S, SCHULTZ N, et al. Sugarcane productivity as a function of nitrogen fertilization and inoculation with diazotrophic plant growth-promoting bacteria[J]. Sugar Tech, 2019, 21(1): 71?82 doi: 10.1007/s12355-018-0638-7 |
[50] | ZHOU J, MA M C, GUAN D W, et al. Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China[J]. Scientific Reports, 2021, 11: 6303 doi: 10.1038/s41598-021-85829-8 |
[51] | BARRON A R, WURZBURGER N, BELLENGER J P, et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils[J]. Nature Geoscience, 2009, 2(1): 42?45 doi: 10.1038/ngeo366 |
[52] | PAJARES S, BOHANNAN B J M. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils[J]. Frontiers in Microbiology, 2016, 7: 1045 |
[53] | REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation: a contemporary perspective[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1): 489?512 doi: 10.1146/annurev-ecolsys-102710-145034 |
[54] | XIAO D, XIAO L M, CHE R X, et al. Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical Karst grassland soil[J]. Agriculture, Ecosystems & Environment, 2020, 301: 106987 |
[55] | STANTON D E, BATTERMAN S A, VON FISCHER J C, et al. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum[J]. Ecology, 2019, 100(9): e02795 |
[56] | LI Y B, LI Q, GUAN G H, et al. Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content[J]. PeerJ, 2020, 8: e9062 doi: 10.7717/peerj.9062 |
[57] | THOMPSON N B, GREEN M T, PETERS J C, et al. Nitrogen fixation via a terminal Fe (Ⅳ) nitride[J]. Journal of the American Chemical Society, 2017, 139(43): 15312?15315 doi: 10.1021/jacs.7b09364 |
[58] | TROVERO M F, SCAVONE P, PLATERO R, et al. Herbaspirillum seropedicae differentially expressed genes in response to iron availability[J]. Frontiers in Microbiology, 2018, 9: 1430 doi: 10.3389/fmicb.2018.01430 |
[59] | ALAHARI A, APTE S K. Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium, Anabaenatorulosa[J]. Microbiology, 1998, 144: 1557?1563 |
[60] | SINGH R K, SINGH P, LI H B, et al. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp[J]. BMC Plant Biology, 2020, 20(1): 220 doi: 10.1186/s12870-020-02400-9 |
[61] | 狄义宁, 李自超, 谢林艳, 等. 接种甘蔗内生菌B9对不同甘蔗品种生长的影响[J]. 热带作物学报, 2021, 42(1): 149?158 DI Y N, LI Z C, XIE L Y, et al. Impact of endophyte inoculation on the growth of different sugarcane varieties[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 149?158 |
[62] | SONG X N, ZHANG J L, PENG C R, et al. Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107320 |
[63] | BANIK A, DASH G K, SWAIN P, et al. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition[J]. Microbiological Research, 2019, 219: 56?65 doi: 10.1016/j.micres.2018.11.004 |
[64] | LI Y B, LI Q, CHEN S F. Diazotroph Paenibacillus triticisoli BJ-18 drives the variation in bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize[J]. International Journal of Molecular Sciences, 2021, 22(3): 1460 doi: 10.3390/ijms22031460 |
[65] | ZHANG Y, REN J, WANG W, et al. Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe abilities[J]. PeerJ, 2020, 8(2): e9403 |
[66] | SANTOS M S, NOGUEIRA M A, HUNGRIA M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants[J]. Revista Brasileira De Ciência Do Solo, 2021. DOI: 10.36783/18069657rbcs20200128 |
[67] | Gó MEZ-GODíNEZ L J, FERNANDEZ-VALVERDE S L, MARTINEZ ROMERO J C, et al. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs[J]. Systematic and Applied Microbiology, 2019, 42(4): 517?525 doi: 10.1016/j.syapm.2019.05.003 |
[68] | DROGUE B, SANGUIN H, CHAMAM A, et al. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation[J]. Frontiers in Plant Science, 2014, 5: 607 |
[69] | BLOCH S E, CLARK R, GOTTLIEB S S, et al. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph[J]. Journal of Experimental Botany, 2020, 71(15): 4591?4603 doi: 10.1093/jxb/eraa176 |
[70] | JOUSSET A, BECKER J, CHATTERJEE S, et al. Biodiversity and species identity shape the antifungal activity of bacterial communities[J]. Ecology, 2014, 95(5): 1184?1190 doi: 10.1890/13-1215.1 |
[71] | JOUSSET A, ROCHAT L, LANOUE A, et al. Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria[J]. Molecular Plant Microbe Interactions, 2011, 24(3): 352?358 doi: 10.1094/MPMI-09-10-0208 |
[72] | YIN C T, CASA VARGAS J M, SCHLATTER D C, et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86 doi: 10.1186/s40168-020-00997-5 |
[73] | ZHOU Y W, BAO J Q, ZHANG D H, et al. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism[J]. Applied Soil Ecology, 2020, 153: 103580 doi: 10.1016/j.apsoil.2020.103580 |
[74] | BERG G, EBERL L, HARTMANN A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria[J]. Environmental Microbiology, 2005, 7(11): 1673?1685 doi: 10.1111/j.1462-2920.2005.00891.x |
[75] | RODRí GUEZ-MEDINA N, BARRIOS-CAMACHO H, DURAN-BEDOLLA J, et al. Klebsiella variicola: an emerging pathogen in humans[J]. Emerging Microbes & Infections, 2019, 8(1): 973?988 |
[76] | ROSENBLUETH M, MARTINEZ-ROMERO J C, REYES-PRIETO M, et al. Environmental Mycobacteria: a threat to human health?[J]. DNA and Cell Biology, 2011, 30(9): 633?640 doi: 10.1089/dna.2011.1231 |
[77] | ROSENBLUETH M, MARTí NEZ L, SILVA J, et al. Klebsiella variicola, a novel species with clinical and plant-associated isolates[J]. Systematic and Applied Microbiology, 2004, 27(1): 27?35 doi: 10.1078/0723-2020-00261 |
[78] | MENDES R, PIZZIRANI-KLEINER A A, ARAUJO W L, et al. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates[J]. Applied and Environmental Microbiology, 2007, 73(22): 7259?7267 doi: 10.1128/AEM.01222-07 |
[79] | FIORE A, LAEVENS S, BEVIVINO A, et al. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy[J]. Environmental Microbiology, 2001, 3(2): 137?143 doi: 10.1046/j.1462-2920.2001.00175.x |
[80] | SAWANA A, ADEOLU M, GUPTA R S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species[J]. Frontiers in Genetics, 2014, 5: 429 |
[81] | FOUTS D E, TYLER H L, DEBOY R T, et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice[J]. PLoS Genetics, 2008, 4(7): e1000141 doi: 10.1371/journal.pgen.1000141 |
[82] | OKON Y, ITZIGSOHN R. The development of Azospirillum as a commercial inoculant for improving crop yields[J]. Biotechnology Advances, 1995, 13(3): 415?424 doi: 10.1016/0734-9750(95)02004-M |
[83] | DIVAN BALDANI V L, BALDANI J I, D? BEREINER J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp[J]. Biology and Fertility of Soils, 2000, 30(5/6): 485?491 |
[84] | MUTHUKUMARASAMY R, CLEENWERCK I, REVATHI G, et al. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice[J]. Systematic and Applied Microbiology, 2005, 28(3): 277?286 doi: 10.1016/j.syapm.2005.01.006 |
[85] | BARBARA R, THOMAS H. Azoarcus spp. and their interactions with grass roots[J]. Plant and Soil, 1997, 194(1/2): 57?64 doi: 10.1023/A:1004216507507 |
[86] | ZHANG J L, SONG X N, WEI H, et al. Effect of substituting nitrogen fertilizer with nitrogen-fixing cyanobacteria on yield in a double-rice cropping system in Southern China[J]. Journal of Applied Phycology, 2021, 33: 2221?2232 |