高燕哺3,
李太魁1, 2,
孔海江4,
张金平5,
寇长林1, 2,,
1.河南省农业科学院植物营养与资源环境研究所/河南省农业生态环境重点实验室 郑州 450002
2.农业农村部原阳农业环境与耕地保育科学观测实验站 新乡 453500
3.河南省生态环境监测中心 郑州 450046
4.中国气象局-河南省农业气象保障重点实验室 郑州 450003
5.新乡市气象局 新乡 453003
基金项目:国家自然科学基金项目(41807098)和国家重点研发计划项目(2017YFD0800600, 2017YFC0212400)资助
详细信息
作者简介:吕金岭, 研究方向为农田氮素循环和气体排放。E-mail: lvjinling2008@163.com
通讯作者:寇长林, 研究方向为农田土壤肥力提升。E-mail: koucl@126.com
中图分类号:S19计量
文章访问数:90
HTML全文浏览量:19
PDF下载量:41
被引次数:0
出版历程
收稿日期:2021-07-12
录用日期:2021-08-05
网络出版日期:2021-08-27
刊出日期:2021-11-10
Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil
LYU Jinling1, 2,,GAO Yanbu3,
LI Taikui1, 2,
KONG Haijiang4,
ZHANG Jinping5,
KOU Changlin1, 2,,
1. Institute of Plant Nutrition, Resources and Environmental Science, Henan Academy of Agricultural Sciences / Henan Key Laboratory of Agricultural Eco-Environment, Zhengzhou 450002, China
2. Yuanyang Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation of Ministry of Agriculture and Rural Affaires, Xinxiang 453500, China
3. Henan Ecological Environment Monitoring Center, Zhengzhou 450046, China
4. Henan Key Laboratory of Agrometeorological Support and Applied Technique - China Meteorological Administration, Zhengzhou 450003, China
5. Xinxiang Meteorological Office, Xinxiang 453003, China
Funds:This study was supported by the National Natural Science Foundation of China (41807098) and the National Key Research and Development Program of China (2017YFD0800600, 2017YFC0212400)
More Information
Corresponding author:E-mail: koucl@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:砂姜黑土是黄淮海平原重要的中低产土壤, 由于其剖面含有砂姜层, 易产生裂隙, 影响了氮素在土壤剖面的迁移分布, 可能导致砂姜黑土的N2O排放存在一定的独特性。基于此, 本研究以砂姜黑土小麦-玉米轮作体系为研究对象, 设置4个处理, 分别为不施肥(CK)、传统施肥(TR)、优化施肥(OPT)和再优化施肥(ZOPT), 通过静态箱-气相色谱法结合常规土壤参数的监测与分析, 探究砂姜黑土不同施氮条件下N2O排放特征、累积排放量及关键驱动因素。结果显示, 砂姜黑土小麦季的N2O平均排放通量为14.2~21.6 μg·m?2·h?1, 累积排放量为0.82~1.24 kg(N)·hm?2; 玉米季的N2O平均排放通量为14.4~24.5 μg·m?2·h?1, 累积排放量为0.42~0.71 kg(N)·hm?2; 不同处理小麦季的N2O累积排放量均高于玉米季。小麦季追肥期与基肥期的N2O累积排放量分别为0.27~0.41 kg(N)·hm?2和0.55~0.83 kg(N)·hm?2, 玉米季分别为0.18~0.30 kg(N)·hm?2和0.24~0.41 kg(N)·hm?2, 追肥期N2O累积排放量均高于基肥期。相关性分析结果显示, CK处理的N2O排放量与土壤温度、含水量和硝酸盐含量均表现出明显的多元线性相关(P<0.05), TR、OPT和ZOPT仅与土壤硝酸盐含量呈极显著多元线性相关(P<0.01), 而与土壤温度和土壤含水量未表现明显的相关性, 说明施肥条件下, 土壤硝酸盐含量的高低成为影响砂姜黑土农田土壤N2O排放最关键的影响因素。除此之外, 不同施氮量的N2O累积排放量差别明显(P<0.05), TR处理的N2O排放量最高, 小麦玉米季分别为1.24 kg(N)·hm?2和0.71 kg(N)·hm?2, 显著高于OPT处理[0.99 kg(N)·hm?2和0.51 kg(N)·hm?2]和ZOPT处理[0.82 kg(N)·hm?2和0.42 kg(N)·hm?2]。无论小麦季还是玉米季N2O的累积排放量均随施氮量的增加而呈指数增加趋势, 相关性系数分别达0.997和0.977 (P<0.05), 说明砂姜黑土传统施氮N2O存在过量排放问题。总而言之, 尽管与其他土壤相比, 砂姜黑土不属于N2O高排土壤, 但传统施氮量导致的N2O排放量仍不可忽视。
关键词:砂姜黑土/
N2O排放/
施氮量/
土壤硝酸盐含量/
静态箱-气相色谱法/
小麦-玉米轮作
Abstract:Lime concretion black soil is an important medium and low-yield soil in the Huanghuaihai Plain. It is prone to cracks because containing a high clay and sand ginger layer, making it unique in nitrogen transport. This study used the wheat and corn rotation system in lime concretion black soil as the research object, researching the N2O emission characteristics and key driving factors by static box-gas chromatography methods. The experiment included four treatments: no fertilization (CK), traditional fertilization (TR), optimized fertilization (OPT), and re-optimized fertilization (ZOPT). Results showed that the average emission flux of N2O in the wheat season ranged from 14.2 to 21.6 μg?m?2?h?1, and the cumulative emission amount ranged from 0.82 to 1.24 kg(N)?hm?2; the average emission flux of N2O in the corn season ranged from 14.4 to 24.5 μg?m?2?h?1, the cumulative emission amount ranged from 0.42 to 0.71 kg(N)?hm?2; the N2O emission in the wheat season was higher than that in the corn season, and the N2O emission in the top dressing period of the two seasons was higher than that in the basal fertilizer period, demonstrating that the wheat season and top dressing period were high N2O emission periods for lime concretion black soil. The correlation analysis results showed that N2O emission of CK showed a significant multiple linear correlation with soil temperature, water content, and NO3?-N content (P<0.05); whereas that of TR, OPT, and ZOPT only showed a significant multiple linear correlation with soil nitrate (P<0.01). There was no significant correlation between soil temperature and soil water content (except in individual cases), indicating that under fertilization conditions, the level of soil nitrate content was the most critical factor affecting N2O emissions from the farmland of lime concretion black soil. In addition, the cumulative N2O emissions of different nitrogen application rates were significantly different (P<0.05), and the N2O emissions of the TR treatment were the highest, which were 1.24 kg(N)?hm?2 and 0.71 kg(N)?hm?2, respectively, in the wheat and corn seasons, significantly higher than those of OPT treatment [0.99 kg(N)?hm?2 and 0.51 kg(N)?hm?2] and ZOPT treatment [0.82 kg(N)?hm?2 and 0.42 kg(N)?hm?2]. The cumulative emissions of N2O in both the wheat and corn seasons showed an exponentially increasing trend with the increase in nitrogen application, with the correlation coefficients reaching 0.997 and 0.977 (P<0.05), respectively, indicating that the traditional lime concretion black soil nitrogen application had the problem of excessive emissions of N2O. Overall, compared with other soils, although lime concretion black soil is not a high-emission soil of N2O, the N2O emission caused by higher nitrogen application cannot be ignored.
Key words:Lime concretion black soil/
N2O emission/
Nitrogen fertilizer amount/
Soil nitrate content/
Static chamber-gas chromatography/
Wheat and corn rotation
HTML全文

图12019—2021年试验期间的气温与降水量
Figure1.Temperature and precipitation during the experiment period in 2019?2021


图2气体采样装置和田间布置图
Figure2.Gas sampling device and field layout


图3砂姜黑土小麦-玉米轮作试验期耕层不同深度土壤容积含水量、电导率和温度的变化
Figure3.Soil moisture content (VW), electrical conductivity (EC) and temperature in different depthes of plough layer of lime concretion black soil during the experiment period


图4小麦-玉米轮作农田不同施肥处理下典型施肥期的N2O挥发速率
CK、TR、OPT和ZOPT处理施肥情况如表1所示。Fertilization of CK, TR, OPT and ZOPT treatments are shown in Table 1.
Figure4.N2O fluxes in the typical fertilization periods of different fertilization treatments of wheat and corn rotation field


图5砂姜黑土小麦季和玉米季不同施肥处理耕层土壤NH4+-N和NO3?-N含量动态变化
CK、TR、OPT和ZOPT处理施肥情况如表1所示。Fertilization of CK, TR, OPT and ZOPT treatments are shown in Table 1.
Figure5.Dynamic of soil NH4+-N and NO3?-N contents of plough layer under different fertilization treatments in wheat and corn seasons of lime concretion black soil


图6砂姜黑土施肥量与小麦季和玉米季N2O排放量的响应关系
Figure6.Correlation between cumulative N2O emission and N fertilizer rate in wheat and corn seasons in lime concretion black soil

表1砂姜黑土小麦-玉米轮作农田不同施肥处理的施肥量
Table1.Fertilization rates of different fertilization treatments of wheat and corn rotation cropland in lime concretion black soil
作物 Crop | 处理 Treatment | 氮肥 N fertilizer | 磷肥 P2O5 | 钾肥 K2O | ||
总量 Total | 基肥 Basal | 追肥 Topdressing | ||||
小麦 Wheat | CK | 0 | 0 | 0 | ||
TR | 250 | 150 | 100 | 90 | 90 | |
OPT | 220 | 132 | 88 | 90 | 90 | |
ZOPT | 190 | 114 | 76 | 90 | 90 | |
玉米 Maize | CK | 0 | 0 | 0 | ||
TR | 250 | 150 | 100 | 67.5 | 67.5 | |
OPT | 220 | 132 | 88 | 67.5 | 67.5 | |
ZOPT | 190 | 114 | 76 | 67.5 | 67.5 |

表2砂姜黑土小麦-玉米轮作的N2O平均排放通量及累积排放量
Table2.Average fluxes and cumulative emissions of N2O in wheat and corn rotation system under different fertilization treatments
处理 Treatment | 小麦季 Wheat season | 玉米季 Corn season | 小麦-玉米轮作体系 Rotation system | |||||
N2O平均通量 Average N2O flux [μg(N)·m?2·h?1] | N2O累积排放量 Cumulative N2O emission [kg(N)·hm?2] | N2O平均通量 Average N2O flux [μg(N)·m?2·h?1] | N2O累积排放量 Cumulative N2O emission [kg(N)·hm?2] | N2O平均通量 Average N2O flux [μg(N)·m?2·h?1] | N2O累积排放量 Cumulative N2O emission [kg(N)·hm?2·a?1] | |||
CK | 3.65±0.95d | 0.21±0.20d | 3.34±0.52d | 0.11±0.02c | 3.50±0.74d | 0.31±0.22d | ||
TR | 21.55±4.12a | 1.24±0.41a | 24.45±5.27a | 0.71±0.27a | 19.56±4.70a | 1.96±0.68a | ||
OPT | 17.13±3.28b | 0.99±0.33b | 17.57±3.86b | 0.51±0.24b | 17.35±3.57b | 1.49±0.57b | ||
ZOPT | 14.17±3.11c | 0.82±0.26c | 14.42±4.11c | 0.42±0.28b | 14.30±3.61c | 1.23±0.54c | ||
CK、TR、OPT和ZOPT处理施肥情况如表1所示。同列不同字母表示不同处理间差异显著(P<0.05)。Fertilization of CK, TR, OPT and ZOPT treatments are shown in Table 1. Different letters in the same column mean significant differences among treatments at P<0.05 level. |

表3砂姜黑土小麦季和玉米季不同施肥处理N2O排放与土壤环境因子相关性分析
Table3.Correlation analysis of N2O flux from different treatments and soil environmental factors under different fertilization treatments in wheat and maize seasons of lime concretion black soil
时期 Stage | 处理 Treatment | NH4+-N | NO3?-N | T5 cm | T10 cm | T20 cm | V5 cm | V10 cm | V20 cm | ||
mg·kg?1 | ℃ | m3·m?3 | |||||||||
玉米季 Corn season | CK | 0.177 | 0.421* | 0.421* | 0.402* | 0.321 | 0.210 | 0.380* | 0.287 | ||
TR | 0.163 | 0.665** | 0.046 | 0.039 | 0.028 | 0.120 | 0.240 | 0.214 | |||
OPT | 0.278 | 0.652** | 0.069 | 0.058 | 0.024 | 0.103 | 0.134 | 0.220 | |||
ZOPT | 0.183 | 0.783** | 0.152 | 0.168 | 0.111 | 0.187 | 0.156 | 0.238 | |||
小麦季 Wheat season | CK | 0.033 | 0.373* | 0.131 | 0.055 | 0.372* | 0.407* | 0.337* | 0.022 | ||
TR | 0.119 | 0.903** | 0.063 | 0.155 | 0.041 | 0.154 | 0.185 | 0.307* | |||
OPT | 0.155 | 0.799** | 0.042 | 0.107 | 0.052 | 0.151 | 0.200 | 0.254 | |||
ZOPT | 0.171 | 0.831** | 0.029 | 0.125 | 0.052 | 0.164 | 0.257 | 0.350* | |||
CK、TR、OPT和ZOPT处理施肥情况如表1所示。T5 cm、T10 cm和T20 cm分别表示5 cm、10 cm、20 cm的土壤温度, V5 cm、V10 cm和V20 cm分别表示0~5 cm、5~10 cm和10~20 cm土层的体积含水量。*表示P<0.05水平显著相关; **表示在P<0.01水平显著相关。Fertilization of CK, TR, OPT and ZOPT treatments are shown in Table 1. T5 cm, T10 cm and T20 cm are soil temperature at 5 cm, 10 cm and 20 cm depths. V5 cm, V10 cm and V20 cm are volumetric water contents at 0?5 cm, 5?10 cm and 10?20 cm soil layers. * indicates significant correlation at P<0.05 level; ** indicates significant correlation at P<0.01 level. |

表4砂姜黑土小麦和玉米不同施肥处理的产量、氮肥利用率及N2O排放系数
Table4.Crop yields, nitrogen fertilizer utilization rates and N2O emission factors of different fertilization treatments in wheat and corn seasons of lime concretion black soil
作物 Crop | 处理 Treatment | 施氮量 N fertilizer rate (kg·hm?2) | 籽粒产量 Yield (t·hm?2) | 地上吸氮量 N uptake of aboveground part (kg·hm?2) | 氮肥利用率 Nitrogen use efficiency (%) | N2O挥发量 N2O emission (kg·hm?2) | N2O排放系数 N2O emission factor (%) |
玉米 Corn | CK | 0 | 3.39±0.18b | 43.9±2.8b | / | 0.11±0.02c | / |
TR | 250 | 7.79±0.23a | 136.1±6.5a | 36.9±4.3c | 0.71±0.27a | 0.28± 0.03a | |
OPT | 220 | 7.82±0.21a | 136.5±5.9a | 42.1±.2.9b | 0.51±0.24b | 0.23±0.03b | |
ZOPT | 190 | 7.73±0.26a | 134.7±5.3a | 47.8±3.2a | 0.42±0.28b | 0.22±0.04b | |
小麦 Wheat | CK | 0 | 3.45±0.14c | 70.0±3.1c | / | 0.21±0.20d | / |
TR | 250 | 8.06±0.10ab | 167.2±4.9b | 39.0±5.1c | 1.24±0.41a | 0.50±0.05a | |
OPT | 220 | 8.11±0.13a | 170.3±5.7a | 45.6±3.7b | 0.99±0.33b | 0.45±0.03b | |
ZOPT | 190 | 7.95±0.11b | 166.9±3.9b | 51.0±5.5a | 0.82±0.26c | 0.43±0.06b | |
CK、TR、OPT和ZOPT处理施肥情况如表1所示。氮肥利用率=(施氮处理地上吸氮量–CK地上吸氮量)/施氮量×100%。同列不同字母表示不同处理间差异显著(P<0.05)。Fertilization of CK, TR, OPT and ZOPT treatments are shown in Table 1. Nitrogen use efficiency (NUE) = (aboveground N uptake in fertilization treatments – that in CK treatment) / N application rate ×100%. Different letters in the same column mean significant differences among treatments at P<0.05 level. |

参考文献
[1] | IPCC, STOCKER T F, QIN D, et al. The physical science basis. contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change[EB/OL]. Working GroupⅠto the Fifth Assess. 2013. https://www.oalib.com/references/14767623 |
[2] | 李长生, 肖向明, FROLKING S, 等. 中国农田的温室气体排放[J]. 第四纪研究, 2003, 23(5): 493?503 doi: 10.3321/j.issn:1001-7410.2003.05.004 LI C S, XIAO X M, FROLKING S, et al. Greenhouse gas emissions from croplands of China[J]. Quaternary Sciences, 2003, 23(5): 493?503 doi: 10.3321/j.issn:1001-7410.2003.05.004 |
[3] | DING T, NING Y D, ZHANG Y. Estimation of greenhouse gas emissions in China 1990?2013[J]. Greenhouse Gases: Science and Technology, 2017, 7(6): 1097?1115 doi: 10.1002/ghg.1718 |
[4] | ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375?8380 doi: 10.1073/pnas.1210447110 |
[5] | 巨晓棠, 谷保静. 氮素管理的指标[J]. 土壤学报, 2017, 54(2): 281?296 JU X T, GU B J. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281?296 |
[6] | 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题[J]. 植物营养与肥料学报, 2014, 20(1): 1?6 doi: 10.11674/zwyf.2014.0101 CAI Z C, YAN X Y, ZHU Z L. A great challenge to solve nitrogen pollution from intensive agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1?6 doi: 10.11674/zwyf.2014.0101 |
[7] | 胡慧娴, 袁丹, 曾佳瑞, 等. 植物排放N2O研究进展[J]. 中国生态农业学报(中英文), 2021, 29(2): 345?354 HU H X, YUAN D, ZENG J R, et al. Advances in plant nitrous oxide (N2O) emissions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 345?354 |
[8] | LEE A, WINTHER M, PRIEMé A, et al. Hot spots of N2O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils[J]. Soil Biology and Biochemistry, 2017, 115: 178?186 doi: 10.1016/j.soilbio.2017.08.025 |
[9] | 胡春胜, 张玉铭, 秦树平, 等. 华北平原农田生态系统氮素过程及其环境效应研究[J]. 中国生态农业学报, 2018, 26(10): 1501?1514 HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1501?1514 |
[10] | LYU J, LIU X J, LIU H, et al. Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region[J]. Nutrient Cycling in Agroecosystems, 2014, 98(1): 15?26 doi: 10.1007/s10705-013-9592-7 |
[11] | 熊丽萍, 吴家梅, 纪雄辉, 等. 水旱轮作系统中土壤CH4和N2O排放研究进展[J]. 农业环境科学学报, 2020, 39(4): 863?871 doi: 10.11654/jaes.2020-0101 XIONG L P, WU J M, JI X H, et al. A review on soil CH4 and N2O emissions from paddy-upland rotation systems[J]. Journal of Agro-Environment Science, 2020, 39(4): 863?871 doi: 10.11654/jaes.2020-0101 |
[12] | 吕金岭, 王小非, 李太魁, 等. 不同施肥方式下砂姜黑土冬小麦-夏玉米轮作农田氨挥发特征及排放系数[J]. 中国生态农业学报(中英文), 2020, 28(12): 1869?1879 LYU J L, WANG X F, LI T K, et al. Ammonia emission characteristics and emission coefficients of wheat and corn rotation cropland under different fertilization methods in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1869?1879 |
[13] | 李欠欠. 脲酶抑制剂LIMUS对我国农田氨减排及作物产量和氮素利用的影响[D]. 北京: 中国农业大学, 2014 LI Q Q. Effect of urease inhibitor LIMUS on ammonia mitigation and crop yield and nitrogen use efficiency in different croplands of China[D]. Beijing: China Agricultural University, 2014 |
[14] | 姜超强, 卢殿君, 祖朝龙, 等. 施用方式和氮肥种类对砂姜黑土氮素迁移的影响[J]. 土壤, 2018, 50(2): 248?255 JIANG C Q, LU D J, ZU C L, et al. Effects of different fertilization methods and nitrogen fertilizers on nitrogen diffusion and migration in lime concretion black soil[J]. Soils, 2018, 50(2): 248?255 |
[15] | 王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(6): 1370?1380 doi: 10.11766/trxb201902280624 WANG Y K, GUO Z C, ZHANG Z B, et al. Effect of tillage practices on soil physical properties and maize growth in Shajiang black soil (vertisol)[J]. Acta Pedologica Sinica, 2019, 56(6): 1370?1380 doi: 10.11766/trxb201902280624 |
[16] | 高学振, 张丛志, 张佳宝, 等. 生物炭、秸秆和有机肥对砂姜黑土改性效果的对比研究[J]. 土壤, 2016, 48(3): 468?474 GAO X Z, ZHANG C Z, ZHANG J B, et al. Comparison of biochar, straw and manure in improving Shajiang black soil[J]. Soils, 2016, 48(3): 468?474 |
[17] | 丁洪, 蔡贵信, 王跃思, 等. 华北平原几种主要类型土壤的硝化及反硝化活性[J]. 农业环境保护, 2001, 20(6): 390?393 DING H, CAI G X, WANG Y S, et al. Nitrification and denitrification potential in different types of soils in the North China Plain[J]. Agro-Environmental Protection, 2001, 20(6): 390?393 |
[18] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 BAO S D. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000 |
[19] | 肖乾颖, 黄有胜, 胡廷旭, 等. 施肥方式对紫色土农田生态系统N2O和NO排放的影响[J]. 中国生态农业学报, 2018, 26(2): 203?213 XIAO Q Y, HUANG Y S, HU T X, et al. Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 203?213 |
[20] | 高建民. 水氮供应对小麦—玉米轮作农田N2O排放的影响及其机理研究[D]. 郑州: 河南农业大学, 2017 GAO J M. N2O emission from the agricultural soil under the supply of nitrogen and water in wheat-maize rotation system[D]. Zhengzhou: Henan Agricultural University, 2017 |
[21] | 张秀玲, 孙贇, 张水清, 等. 生物质炭对华北平原4种典型土壤N2O排放的影响[J]. 环境科学, 2019, 40(11): 5173?5181 ZHANG X L, SUN Y, ZHANG S Q, et al. Effects of biochar on N2O emission from four typical soils in the North China Plain[J]. Environmental Science, 2019, 40(11): 5173?5181 |
[22] | LYU J, YIN X H, DORICH C, et al. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: a 3-year field measurement from long-term fertilizer experiments[J]. Soil and Tillage Research, 2021, 212: 105053 doi: 10.1016/j.still.2021.105053 |
[23] | DING W X, CAI Y, CAI Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain[J]. Science of the Total Environment, 2007, 373(2/3): 501?511 |
[24] | 陈静, 王迎春, 李虎, 等. 基于DNDC模型的冬小麦-夏玉米农田滴灌施肥优化措施研究[J]. 植物营养与肥料学报, 2019, 25(2): 200?212 doi: 10.11674/zwyf.18017 CHEN J, WANG Y C, LI H, et al. Optimization of drip fertilization practice for winter wheat-summer maize farmland using the DNDC model[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 200?212 doi: 10.11674/zwyf.18017 |
[25] | 邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291?1301 ZOU F L, CAO C G, MA J Y, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291?1301 |
[26] | 吕金岭, 王小非, 寇长林. 两种方法测定砂姜黑土玉米季农田氨挥发[J]. 磷肥与复肥, 2020, 35(11): 45?49 doi: 10.3969/j.issn.1007-6220.2020.11.015 LYU J L, WANG X F, KOU C L. Two methods for determination of ammonia volatilization in corn field of lime concretion black soil[J]. Phosphate& Compound Fertilizer, 2020, 35(11): 45?49 doi: 10.3969/j.issn.1007-6220.2020.11.015 |
[27] | 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781?1798 doi: 10.11674/zwyf.18441 CAO W C, SONG H, WANG Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781?1798 doi: 10.11674/zwyf.18441 |
[28] | 曾江海, 王智平. 农田土壤N2O生成与排放研究[J]. 土壤通报, 1995, 26(3): 132?134 ZENG J H, WANG Z P. Study on N2O generation and emission from farmland soil[J]. Chinese Journal of Soil Science, 1995, 26(3): 132?134 |
[29] | 杨云, 黄耀, 姜纪峰. 土壤理化特性对冬季菜地N2O排放的影响[J]. 农村生态环境, 2005, 21(2): 7?12 YANG Y, HUANG Y, JIANG J F. Influence of soil properties on N2O emission from vegetable soils in winter[J]. Rural Eco-Environment, 2005, 21(2): 7?12 |
[30] | 赵燕. 河南省砂姜黑土系统分类归属及代表土系的建立[D]. 郑州: 郑州大学, 2012 ZHAO Y. Calcic black soils classified in Chinese soil taxonomy and the soil series established in Henan Province[D]. Zhengzhou: Zhengzhou University, 2012 |
[31] | 唐占明, 刘杏认, 张晴雯, 等. 对比研究生物炭和秸秆对麦玉轮作系统N2O排放的影响[J]. 环境科学, 2021, 42(3): 1569?1580 TANG Z M, LIU X R, ZHANG Q W, et al. Effects of biochar and straw on soil N2O emission from a wheat-maize rotation system[J]. Environmental Science, 2021, 42(3): 1569?1580 |
[32] | 许宏伟, 李娜, 冯永忠, 等. 氮肥和秸秆还田方式对麦玉轮作土壤N2O排放的影响[J]. 环境科学, 2020, 41(12): 5668?5676 XU H W, LI N, FENG Y Z, et al. Effects of nitrogen fertilizer and straw returning methods on N2O emissions in wheat-maize rotational soils[J]. Environmental Science, 2020, 41(12): 5668?5676 |
[33] | SKIBA U S, VAN S D, BALL B C. The influence of tillage on NO and N2O fluxes under spring and winter barley[J]. Soil Use and Management, 2002, 18(4): 340?345 doi: 10.1079/SUM2002141 |
[34] | LUDWIG B, BERGSTERMANN A, PRIESACK E, et al. Modelling of crop yields and N2O emissions from silty arable soils with differing tillage in two long-term experiments[J]. Soil and Tillage Research, 2011, 112(2): 114?121 doi: 10.1016/j.still.2010.12.005 |