李成芳1, 2,
盛锋3,
冯珺珩1,
胡权义1,
陈淯琨1,
周浩之1,
刘天奇1, 2,,
1.农业部长江中游作物生理生态与耕作重点实验室/华中农业大学植物科学技术学院 武汉 430070
2.长江大学/长江大学主要粮食作物产业化湖北省协同创新中心 荆州 434023
3.省部共建生物催化与酶工程国家重点实验室/湖北大学生命科学学院/湖北大学中国农业碳减排碳交易研究中心 武汉 430062
基金项目:国家重点研究计划项目(2017YFD0301403)、国家自然科学基金项目(71871086)、湖北省自然科学基金(2018CFB608)和中央高校基本科研业务费专项(2662019FW009)资助
详细信息
作者简介:吴梦琴,主要从事稻田生态研究。E-mail: 1914316264@qq.com
通讯作者:刘天奇,主要研究方向为农业碳中和和土壤碳氮循环。E-mail: 570112975@qq.com
中图分类号:X511计量
文章访问数:88
HTML全文浏览量:22
PDF下载量:37
被引次数:0
出版历程
收稿日期:2021-02-23
录用日期:2021-04-28
网络出版日期:2021-07-13
刊出日期:2021-09-06
Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model
WU Mengqin1,,LI Chengfang1, 2,
SHENG Feng3,
FENG Junheng1,
HU Quanyi1,
CHEN Yukun1,
ZHOU Haozhi1,
LIU Tianqi1, 2,,
1. Key Laboratory of Crop Physiology, Ecology and Farming in the Middle Reaches of the Yangtze River, Ministry of Agriculture/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
2. Yangtze University/Hubei Collaborative Innovation Center for the Industrialization of Major Food Crops, Yangtze University, Jingzhou 434023, China
3. State Key Laboratory of Biocatalysis and Enzyme Engineering Jointly Established by the Province and the Ministry/College of Life Sciences, Hubei University/ China Agricultural Carbon Emission Reduction and Carbon Trading Research Center, Hubei University, Wuhan 430062, China
Funds:This study was supported by the National Key Research and Development Project of China (2017YFD0301403), the National Natural Science Foundation of China (71871086), the Natural Science Foundation of Hubei Province (2018CFB608) and the Fundamental Research Funds for the Central Universities (2662019FW009)
More Information
Corresponding author:E-mail: 570112975@qq.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了探究不同管理措施对湖北省主要稻作系统CH4和N2O周年排放的影响, 利用田间观测数据验证DNDC模型后, 结合地理信息系统(ArcGIS)模拟和测算湖北省不同稻作系统温室气体的周年排放。本研究于2019年在鄂西北的枣阳市设置水稻-小麦(RW)、水稻-再生稻(RO)稻作系统, 在鄂东南的武穴市设置RO、水稻-油菜(RR)稻作系统, 在江汉平原的潜江市设置RW、RO、RR稻作系统, 每个稻作系统均设置常规栽培和优化栽培(包括氮肥深施、节水灌溉、秸秆还田等)两个模式, 通过静态箱法测定温室气体CH4和N2O的周年排放特征。大田验证试验结果显示, 不同稻作系统不同栽培模式下CH4和N2O排放实测值与模拟值归一化均方根误差(NRMSE)值为19.3%~24.2%, 模型拟合度在可接受范围之内。DNDC模型模拟和估算结果表明, 湖北省稻作区增温潜势(GWP)表现为江汉平原>鄂东南>鄂西北, 不同区域稻作系统CH4的排放总量、N2O的排放总量和GWP均表现为RW>RO>RR。优化栽培管理模式可以明显减少CH4和N2O排放, 与常规栽培管理模式相比, 优化栽培管理模式下RW、RO和RR的单位面积CH4排放量分别降低9.5%~18.0%、7.3%~18.4%和18.2%~22.4%, N2O排放量分别降低4.2%~14.2%、6.9%~24.7%和8.8%~18.1%。优化栽培管理后, 各地区的GWP表现为, 鄂西北: 襄阳>十堰>神农架; 鄂东南: 黄冈>咸宁>武汉>黄石>鄂州; 江汉平原: 荆州>荆门>孝感>随州>天门>仙桃>潜江。优化栽培管理模式下鄂西北、鄂东南和江汉平原稻田CH4周年排放总量较常规栽培管理模式分别降低11.8%、14.4%和16.3%, 稻田N2O周年排放总量分别降低82.4%、77.5%和83.0%。本研究结果表明, DNDC模型可以较好地模拟湖北省不同稻作系统下温室气体的排放, 同时优化稻作管理模式对稻田生产具有好的减排效果, 为在湖北省推广该模式提供理论依据。
关键词:稻作系统/
优化管理/
DNDC模型/
甲烷/
氧化亚氮
Abstract:This study explored the impacts of different management measures on the annual emissions of methane (CH4) and nitrous oxide (N2O) from the main rice-based cropping systems in Hubei Province using the denitrification-decomposition (DNDC) model and observed emission data to estimate the annual greenhouse gas emissions via a geographic information system (ArcGIS). In 2019, rice–wheat (RW) and rice–ratoon rice (RO) cropping systems were implemented in Zaoyang City of Northwest Hubei, RO and rice–oilseed rape (RR) cropping systems were implemented in Wuxue City of Southeast Hubei, and RW, RO, and RR cropping systems were implemented in Qianjiang City of the Jianghan Plain. There were two cultivation modes for each rice-based system: conventional cultivation and optimized cultivation. The optimized mode included deep application of nitrogen fertilizer, water-saving irrigation, and straw returning to the field. The annual fluxes of CH4 and N2O were measured using the static closed chamber method. The field validation results showed that the normalized root mean square error between the observed and simulated values of CH4 and N2O emissions ranged from 19.3% to 24.2% under different rice-based cropping systems with different management practices, and the degree of model fitting was acceptable. According to the simulation results of the DNDC model, the global warming potential (GWP) for the rice growing regions in Hubei Province followed the order of Jianghan Plain > Southeast Hubei > Northwest Hubei, and the annual cumulative emissions of CH4, N2O, and GWP under different rice-based cropping systems in different regions was in the order of RW > RO > RR. The cultivation modes significantly affected the CH4 and N2O emissions. Compared with conventional cultivation, optimized cultivation lowered the CH4 emissions per unit area by 9.5%–18.0%, 7.3%–18.4%, and 18.2%–22.4% under RW, RO, and RR, respectively. The N2O emissions lowered by 4.2%–14.2%, 6.9%–24.7%, and 8.8%–18.1%, respectively. Moreover, compared with conventional cultivation, optimized cultivation decreased the annual cumulative CH4 emissions by 11.8%, 14.4%, and 16.3% in Northwest Hubei, Southeast Hubei, and the Jianghan Plain, respectively, and decreased the annual cumulative N2O emissions by 82.4%, 77.5%, and 83.0%, respectively. Under optimized cultivation, the GWP for Northwest Hubei was in the order of Xiangyang > Shiyan > Shennongjia, that for Southeast Hubei was in the order Huanggang > Xianning > Wuhan > Huangshi > Ezhou, and that for the Jianghan Plain was in the order Jingzhou > Jingmen > Xiaogan > Suizhou > Tianmen > Xiantao > Qianjiang. Our results show that the DNDC model can suitably simulate the greenhouse gas emissions of different rice-based cropping systems in Hubei Province. An optimized cultivation mode is needed to mitigate greenhouse gas emissions during rice production in Hubei Province.
Key words:Rice-based cropping system/
Optimized cultivation/
Denitrification-decomposition (DNDC) model/
CH4/
N2O
HTML全文
图1湖北省不同稻作区常规模式与优化模式下稻田CH4 (a)和N2O (b)周年排放总量
RW: 水稻-小麦系统; RR: 水稻-油菜系统; RO: 再生稻系统。RW: rice-wheat cropping system; RR: rice-oilseed rape cropping system; RO: rice-ratoon rice cropping system.
Figure1.Total cumulative CH4 (a) and N2O (b) emissions from different rice-based cropping systems under different cultivation modes in Hubei Province in 2019
下载: 全尺寸图片幻灯片
表1湖北省不同稻作区试验点土壤肥力状况
Table1.Soil fertility status of the experimental sites in different rice planting regions in Hubei Province
稻作区 Rice planting region | 硝态氮 Nitrate nitrogen (mg?kg?1) | 铵态氮 Ammonium nitrogen (mg?kg?1) | 有机质 Organic matter (g?kg?1) | 速效磷 Available phosphorus (mg?kg?1) | 速效钾 Available potassium (mg?kg?1) | 全氮 Total nitrogen (g?kg?1) | 全磷 Total phosphorus (g?kg?1) | 全钾 Total potassium (g?kg?1) | pH | 容重 Bulk density (g?cm?3) |
枣阳 Zaoyang | 5.35 | 8.01 | 16.90 | 11.25 | 92.36 | 2.05 | 0.87 | 3.00 | 6.75 | 1.29 |
武穴 Wuxuan | 6.67 | 9.96 | 19.55 | 10.07 | 90.15 | 1.68 | 0.49 | 3.35 | 6.75 | 1.29 |
潜江 Qianjiang | 4.20 | 9.10 | 18.87 | 11.56 | 98.63 | 1.80 | 0.85 | 3.23 | 7.85 | 1.05 |
下载: 导出CSV
表2湖北省不同稻作区不同稻作管理模式CH4和N2O排放通量的DNDC模型拟合度(NRMSE)检测
Table2.Fit check of CH4 and N2O fluxes under different rice cultivation modes based on DNDC model fit test (NRMSE) in different rice planting regions of Hubei Province
地区 Region | CH4 | N2O | |||||||||||||
常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | 常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | ||||||||||||
RW | RO | RR | RW | RO | RR | RW | RO | RR | RW | RO | RR | ||||
鄂西北 Northwest Hubei | 19.7 | 20.5 | — | 20.2 | 21.3 | — | 20.4 | 21.3 | — | 19.7 | 23.0 | — | |||
鄂东南 Southeast Hubei | — | 20.5 | 24.4 | — | 22.4 | 20.6 | — | 19.4 | 24.2 | — | 20.4 | 22.2 | |||
江汉平原 Jianghan Plain | 20.2 | 21.4 | 24.1 | 19.7 | 20.6 | 23.2 | 19.7 | 21.4 | 23.7 | 20.2 | 19.1 | 23.1 | |||
RW: 水稻-小麦系统; RR: 水稻-油菜系统; RO: 再生稻系统; “—”表示稻作模式在相应的区域中面积很小,忽略不计。RW: rice-wheat cropping system; RR: rice-oilseed rape cropping system; RO: rice-ratoon rice cropping system. “—” means that the rice cropping pattern has a small area in this area, and the greenhouse gases are ignored. |
下载: 导出CSV
表32019年湖北省不同稻作区不同管理模式下不同稻作系统周年CH4和N2O排放总量
Table3.Annual CH4 and N2O emissions of different rice-based cropping systems under different cultivation modes in different rice planting regions in Hubei Province in 2019
地区 Region | CH4 排放量 CH4 emission [kg(CH4-C)?hm?2] | N2O排放量 N2O emission [kg(N2O-N)?hm?2] | ||||||||||||||
常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | 常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | |||||||||||||
RW | RO | RR | RW | RO | RR | RW | RO | RR | RW | RO | RR | |||||
鄂西北 Northwest Hubei | 十堰 Shiyan | 321.9 | 293.1 | — | 276.6 | 271.6 | — | 8.25 | 1.66 | — | 7.53 | 1.49 | — | |||
襄阳 Xiangyang | 359.2 | 331.3 | — | 317.6 | 280.8 | — | 8.86 | 1.89 | — | 8.26 | 1.64 | — | ||||
神农架 Shennongjia | 334.2 | 321.5 | — | 302.5 | 276.8 | — | 8.06 | 1.53 | — | 7.72 | 1.40 | — | ||||
鄂东南 Southeast Hubei | 武汉 Wuhan | — | 306.3 | 251.3 | — | 263.3 | 200.9 | — | 2.15 | 2.25 | — | 2.00 | 2.02 | |||
黄冈 Huanggang | — | 362.2 | 273.1 | — | 324.4 | 205.3 | — | 2.36 | 2.21 | — | 2.08 | 2.03 | ||||
鄂州 Ezhou | — | 355.2 | 279.3 | — | 312.6 | 222.9 | — | 2.25 | 2.06 | — | 1.91 | 1.88 | ||||
黄石 Huangshi | — | 364.3 | 260.6 | — | 314.5 | 193.8 | — | 2.47 | 2.28 | — | 2.01 | 1.96 | ||||
咸宁 Xianning | — | 367.5 | 264.9 | — | 319.3 | 208.1 | — | 2.31 | 2.15 | — | 2.15 | 1.96 | ||||
江汉平原 Jianghan Plain | 荆门 Jingmen | 364.3 | 354.2 | 268.9 | 305.3 | 303.5 | 225.7 | 9.63 | 2.65 | 2.54 | 8.26 | 2.26 | 2.08 | |||
荆州 Jingzhou | 370.2 | 344.7 | 276.8 | 307.5 | 292.4 | 211.8 | 9.15 | 2.31 | 2.21 | 8.33 | 2.10 | 1.98 | ||||
天门 Tianmen | 354.3 | 342.3 | 261.5 | 295.4 | 279.2 | 214.5 | 8.55 | 2.52 | 2.36 | 7.41 | 2.04 | 1.95 | ||||
仙桃 Xiantao | 360.7 | 331.2 | 264.5 | 296.6 | 273.3 | 220.9 | 8.36 | 2.42 | 2.38 | 7.44 | 1.84 | 1.99 | ||||
孝感 Xiaogan | 381.1 | 357.6 | 276.7 | 319.9 | 304.9 | 234.2 | 8.47 | 2.38 | 2.21 | 7.63 | 2.04 | 1.94 | ||||
随州 Suizhou | 390.2 | 361.5 | — | 328.4 | 324.2 | — | 8.69 | 2.47 | — | 7.58 | 1.86 | — | ||||
潜江 Qianjiang | 348.2 | 328.8 | 246.7 | 285.5 | 271.9 | 197.5 | 8.52 | 2.57 | 2.47 | 7.36 | 2.01 | 2.16 | ||||
RW: 水稻-小麦系统; RR: 水稻-油菜系统; RO: 再生稻系统; “—”表示稻作模式在相应的区域中面积很小,忽略不计。RW: rice-wheat cropping system; RR: rice-oilseed rape cropping system; RO: rice-ratoon rice cropping system. “—” means that the rice cropping pattern has a small area in this area, and the greenhouse gases are ignored. |
下载: 导出CSV
表42019年湖北省不同稻作区不同管理模式下不同稻作系统周年增温潜势
Table4.Annual global warming potential of different rice-based cropping systems under different management modes in different rice planting regions in Hubei Province in 2019
地区 Region | 常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | ||||||
RW | RO | RR | RW | RO | RR | |||
鄂西北 Northwest Hubei | 十堰 Shiyan | 16.22 | 13.42 | — | 14.39 | 12.22 | — | |
襄阳 Xiangyang | 18.75 | 14.52 | — | 15.50 | 12.46 | — | ||
神农架 Shennongjia | 16.35 | 14.38 | — | 15.20 | 12.18 | — | ||
鄂东南 Southeast Hubei | 武汉 Wuhan | — | 14.65 | 11.78 | — | 12.06 | 10.15 | |
黄冈 Huanggang | — | 14.77 | 12.17 | — | 13.58 | 10.20 | ||
鄂州 Ezhou | — | 14.31 | 12.28 | — | 13.30 | 10.62 | ||
黄石 Huangshi | — | 14.56 | 12.07 | — | 13.39 | 10.00 | ||
咸宁 Xianning | — | 14.64 | 12.33 | — | 13.54 | 10.34 | ||
江汉平原 Jianghan Plain | 荆门 Jingmen | 17.68 | 14.36 | 12.41 | 15.24 | 13.10 | 10.83 | |
荆州 Jingzhou | 17.87 | 14.28 | 12.47 | 15.42 | 12.85 | 10.39 | ||
天门 Tianmen | 18.26 | 14.33 | 12.25 | 14.93 | 12.48 | 10.40 | ||
仙桃 Xiantao | 18.57 | 14.47 | 12.36 | 14.79 | 12.33 | 10.54 | ||
孝感 Xiaogan | 18.66 | 14.85 | 12.52 | 15.52 | 13.10 | 10.90 | ||
随州 Suizhou | 19.16 | 14.79 | — | 15.66 | 13.52 | — | ||
潜江 Qianjiang | 18.88 | 14.54 | 12.11 | 14.51 | 12.21 | 10.19 | ||
RW: 水稻-小麦系统; RR: 水稻-油菜系统; RO: 再生稻系统; “—”表示稻作模式在相应的区域中面积很小,忽略不计。RW: rice-wheat cropping system; RR:rice-oilseed rape cropping system; RO: rice-ratoon rice cropping system. “—” means that the rice cropping pattern has a small area in this area, and the greenhouse gases are ignored. |
下载: 导出CSV
表52019年湖北省不同稻作区不同管理模式下不同稻作系统温室气体周年排放总量
Table5.Cumulative greenhouse gas emissions from different rice-based cropping systems under different cultivation modes in different rice planting regions in Hubei Province in 2019
地区 Region | CH4排放量 CH4 emission [t (CH4-C)] | N2O排放量 N2O emission [t (N2O-N)] | ||||||||||||||
常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | 常规模式 Conventional cultivation mode | 优化模式 Optimized cultivation mode | |||||||||||||
RW | RO | RR | RW | RO | RR | RW | RO | RR | RW | RO | RR | |||||
鄂西北 Northwest Hubei | 十堰 Shiyan | 18 271 | 12 735 | — | 15 700 | 11 801 | — | 468 | 72 | — | 81.2 | 12.3 | — | |||
襄阳 Xiangyang | 139 671 | 12 430 | — | 123 496 | 10 536 | — | 3445 | 71 | — | 610.2 | 11.7 | — | ||||
神农架 Shennongjia | 90 | 84 | — | 82 | 72 | — | 2 | 0 | — | 0.4 | 0.1 | — | ||||
鄂东南 Southeast Hubei | 武汉 Wuhan | — | 10 025 | 972 | — | 8618 | 777 | — | 70 | 9 | — | 12.4 | 3.1 | |||
黄冈 Huanggang | — | 44 370 | 19 965 | — | 39 739 | 15 009 | — | 289 | 162 | — | 48.4 | 66.8 | ||||
鄂州 Ezhou | — | 4124 | 372 | — | 3629 | 297 | — | 26 | 3 | — | 4.2 | 1.0 | ||||
黄石 Huangshi | — | 11 869 | 122 | — | 10 246 | 90 | — | 80 | 1 | — | 12.4 | 0.4 | ||||
咸宁 Xianning | — | 28 400 | 3098 | — | 24 676 | 2433 | — | 179 | 25 | — | 31.6 | 9.2 | ||||
江汉平原 Jianghan Plain | 荆门 Jingmen | 47 884 | 36 904 | 8372 | 40 129 | 31 622 | 7027 | 1266 | 276 | 79 | 206.3 | 44.7 | 25.9 | |||
荆州 Jingzhou | 65 537 | 63 390 | 19 703 | 54 437 | 53 772 | 15 076 | 1620 | 425 | 157 | 280.2 | 73.4 | 26.4 | ||||
天门 Tianmen | 23 586 | 11 351 | 872 | 19 665 | 9258 | 715 | 569 | 84 | 8 | 93.7 | 12.9 | 2.6 | ||||
仙桃 Xiantao | 10 136 | 16 325 | 882 | 8334 | 13 471 | 736 | 235 | 119 | 8 | 39.7 | 17.2 | 2.7 | ||||
孝感 Xiaogan | 32 302 | 23 094 | 1424 | 27 115 | 19 690 | 1205 | 718 | 154 | 11 | 122.9 | 25.0 | 4.0 | ||||
随州 Suizhou | 27 653 | 8430 | — | 23 274 | 7560 | — | 616 | 58 | — | 102.1 | 8.2 | — | ||||
潜江 Qianjiang | 12 762 | 6902 | 82 | 10 464 | 5707 | 66 | 312 | 54 | 1 | 51.3 | 8.0 | 0.3 | ||||
RW: 水稻-小麦系统; RR: 水稻-油菜系统; RO: 再生稻系统 “—”表示稻作模式在相应的区域中面积很小,忽略不计。RW: rice-wheat cropping system; RR: rice-oilseed rape cropping system; RO: rice-ratoon rice cropping system. “—” means that the rice cropping pattern has a small area in this area, and the greenhouse gases are ignored. |
下载: 导出CSV
参考文献
[1] | SOLOMON S, QIN D, MANNING M, et al. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC)[J]. Computational Geometry, 2007, 18(2): 95?123 |
[2] | BENBI D K. Greenhouse gas emissions from agricultural soils: sources and mitigation potential[J]. Journal of Crop Improvement, 2013, 27(6): 752?772 doi: 10.1080/15427528.2013.845054 |
[3] | STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the Intergovernmental Panel on Climate Change[J]. AGU Fall Meeting Abstracts, 2014, 18(2): 95?123 |
[4] | BRAATZ S M. State of the world’s forests 1997[J]. Nature & Resources, 1997, 33(3/4): 18?25 |
[5] | 《湖北农村统计年鉴》编辑委员会. 2019湖北农村统计年鉴[M]. 北京: 中国统计出版社, 2019 Editorial Committee of “Hubei Rural Statistical Yearbook”. 2019 Hubei Rural Statistical Yearbook[M]. Beijing: China Statistics Press, 2019 |
[6] | 曹凑贵, 李成芳, 展茗, 等. 稻田管理措施对土壤碳排放的影响[J]. 中国农业科学, 2011, 44(1): 93?98 doi: 10.3864/j.issn.0578-1752.2011.01.011 CAO C G, LI C F, ZHAN M, et al. Effects of agricultural management practices on carbon emissions in paddy fields[J]. Scientia Agricultura Sinica, 2011, 44(1): 93?98 doi: 10.3864/j.issn.0578-1752.2011.01.011 |
[7] | ZHU Z L, CHEN D L. Nitrogen fertilizer use in China — Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2/3): 117?127 doi: 10.1023/A:1021107026067 |
[8] | 谭月臣, 诸葛玉平, 刘东雪, 等. 华北平原农田管理措施对冬小麦-夏玉米轮作系统N2O和CH4排放的影响[J]. 环境科学学报, 2016, 36(7): 2638?2649 TAN Y C, ZHUGE Y P, LIU D X, et al. Effect of farmland management on N2O and CH4 emission from winter wheat-summer maize rotation system in North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2638?2649 |
[9] | 钟川, 杨滨娟, 张鹏, 等. 基于冬种不同作物的水旱轮作模式对水稻产量及稻田CH4、N2O排放的影响[J]. 核农学报, 2019, 33(2): 379?388 doi: 10.11869/j.issn.100-8551.2019.02.0379 ZHONG C, YANG B J, ZHANG P, et al. Effect of paddy-upland rotation with different winter crops on rice yield and CH4 and N2O emissions in paddy fields[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(2): 379?388 doi: 10.11869/j.issn.100-8551.2019.02.0379 |
[10] | 耿川雄, 任家兵, 马心灵, 等. 基于LCA的不同间作体系产量优势及温室效应研究[J]. 中国生态农业学报(中英文), 2020, 28(2): 159?167 GENG C X, REN J B, MA X L, et al. Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 159?167 |
[11] | 周文涛, 龙文飞, 毛燕, 等. 节水轻简栽培模式下增密减氮对双季稻田温室气体排放的影响[J]. 应用生态学报, 2020, 31(8): 2604?2612 ZHOU W T, LONG W F, MAO Y, et al. Effects of increased planting density with reduced nitrogen fertilizer application on greenhouse gas emission in double-season rice fields under water saving and simple cultivation mode[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2604?2612 |
[12] | 邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291?1301 ZOU F L, CAO C G, MA J Y, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291?1301 |
[13] | XU Y, ZHAN M, CAO C G, et al. Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in Central China[J]. Agriculture, Ecosystems & Environment, 2016, 221: 87?98 |
[14] | TYAGI L, KUMARI B, SINGH S N. Water management — A tool for methane mitigation from irrigated paddy fields[J]. Science of the Total Environment, 2010, 408(5): 1085?1090 doi: 10.1016/j.scitotenv.2009.09.010 |
[15] | 刘天奇. 氮肥深施模式下免耕稻田氮素利用及微生物调控机制研究[D]. 武汉: 华中农业大学, 2018 LIU T Q. Study on nitrogen utilization and microbial regulation mechanism under nitrogen fertilizer deep placement modes in no-tillage rice fields[D]. Wuhan: Huazhong Agricultural University, 2018 |
[16] | FAN D J, LIU T Q, SHENG F, et al. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields[J]. Biology and Fertility of Soils, 2020, 56(5): 711?727 doi: 10.1007/s00374-020-01447-y |
[17] | 胡发龙. 氮肥后移与玉米间作豌豆对土壤温室气体减排的协同效应[D]. 兰州: 甘肃农业大学, 2017 HU F L. The synergetic effect of N-fertilizer postponing application and maize-pea intercropping on the reduction of soil GHG emissions[D]. Lanzhou: Gansu Agricultural University, 2017 |
[18] | 李长生. 生物地球化学: 科学基础与模型方法[M]. 北京: 清华大学出版社, 2016 LI C S. Biogeochemistry: Scientific Basis and Model Method[M]. Beijing: Tsinghua University Press, 2016 |
[19] | 谢海宽, 江雨倩, 李虎, 等. DNDC模型在中国的改进及其应用进展[J]. 应用生态学报, 2017, 28(8): 2760?2770 XIE H K, JIANG Y Q, LI H, et al. Modification and application of the DNDC model in China[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2760?2770 |
[20] | 张远, 李颖, 王毅勇, 等. 三江平原稻田甲烷排放的模拟与估算[J]. 农业工程学报, 2011, 27(8): 293?298 doi: 10.3969/j.issn.1002-6819.2011.08.051 ZHANG Y, LI Y, WANG Y Y, et al. Simulation and estimation of methane emissions from rice paddies in Sanjiang Plain of the Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 293?298 doi: 10.3969/j.issn.1002-6819.2011.08.051 |
[21] | 田展, 牛逸龙, 孙来祥, 等. 基于DNDC模型模拟气候变化影响下的中国水稻田温室气体排放[J]. 应用生态学报, 2015, 26(3): 793?799 TIAN Z, NIU Y L, SUN L X, et al. China’s rice field greenhouse gas emission under climate change based on DNDC model simulation[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 793?799 |
[22] | 孙园园, 孙永健, 王锐婷, 等. DNDC模型对川中丘陵区稻田CH4、N2O排放的模拟对比分析[J]. 生态环境学报, 2011, 20(Z1): 1003?1010 SUN Y Y, SUN Y J, WANG R T, et al. Research of tillage-cropping systems on CH4 and N2O emission from permanently flooded rice fields in a central Sichuan hilly area of southwest China[J]. Ecology and Environmental Sciences, 2011, 20(Z1): 1003?1010 |
[23] | 张国忠, 张翼翔, 黄见良, 等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131?136 ZHANG G Z, ZHANG Y X, HUANG J L, et al. Designing and performance testing a novel head spike harvester of ratoon rice[J]. Journal of Huazhong Agricultural University, 2016, 35(1): 131?136 |
[24] | ZHANG Y J, NIU H S. The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: a review[J]. Agriculture, Ecosystems & Environment, 2016, 230: 271?282 |
[25] | GJETTERMANN B, STYCZEN M, HANSEN H C B, et al. Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY[J]. Soil Biology and Biochemistry, 2008, 40(6): 1506?1518 doi: 10.1016/j.soilbio.2008.01.005 |
[26] | 张岳芳, 周炜, 陈留根, 等. 太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究[J]. 中国生态农业学报, 2013, 21(3): 290?296 ZHANG Y F, ZHOU W, CHEN L G, et al. Methane and nitrous oxide emission under different paddy-upland crop rotation systems during rice growth season in Taihu Lake Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 290?296 |
[27] | 陈冠雄, 商曙辉, 于克伟, 等. 植物释放氧化亚氮的研究[J]. 应用生态学报, 1990, 1(1): 94?96 doi: 10.3321/j.issn:1001-9332.1990.01.010 CHEN G X, SHANG S H, YU K W, et al. Investigation on the emission of nitrous oxide by plant[J]. Chinese Journal of Applied Ecology, 1990, 1(1): 94?96 doi: 10.3321/j.issn:1001-9332.1990.01.010 |
[28] | VAN DER GON H A, BREEMEN N. Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants[J]. Biogeochemistry, 1993, 21(3): 177?190 doi: 10.1007/BF00001117 |
[29] | 孙园园, 孙永健, 王锐婷, 等. 基于DNDC模型的川中丘陵区不同轮作制度下稻田CO2排放研究[J]. 中国农业气象, 2011, 32(4): 530?537 doi: 10.3969/j.issn.1000-6362.2011.04.009 SUN Y Y, SUN Y J, WANG R T, et al. Simulation of CO2 emission from rice fields under different cropping systems in central Sichuan hilly area with DCDC model[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 530?537 doi: 10.3969/j.issn.1000-6362.2011.04.009 |
[30] | TU L H, HU T X, ZHANG J, et al. Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation[J]. Plant and Soil, 2011, 340(1/2): 383?396 |
[31] | ZHOU L Y, ZHOU X H, ZHANG B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis[J]. Global Change Biology, 2014, 20(7): 2332?2343 doi: 10.1111/gcb.12490 |
[32] | 范如芹, 梁爱珍, 杨学明, 等. 耕作与轮作方式对黑土有机碳和全氮储量的影响[J]. 土壤学报, 2011, 48(4): 788?796 doi: 10.11766/trxb201009080370 FAN R Q, LIANG A Z, YANG X M, et al. Effects of tillage and rotation on soil organic carbon and total nitrogen stocks of a black soil[J]. Acta Pedologica Sinica, 2011, 48(4): 788?796 doi: 10.11766/trxb201009080370 |
[33] | FINN D, KOPITTKE P M, DENNIS P G, et al. Microbial energy and matter transformation in agricultural soils[J]. Soil Biology and Biochemistry, 2017, 111: 176?192 doi: 10.1016/j.soilbio.2017.04.010 |
[34] | 李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J]. 中国农业科学, 2015, 48(21): 4381?4389 doi: 10.3864/j.issn.0578-1752.2015.21.018 LI Y Q, TANG J W, CHE S G, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381?4389 doi: 10.3864/j.issn.0578-1752.2015.21.018 |
[35] | 李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362?2367 LI C F, KOU Z K, ZHANG Z S, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-till rice fields[J]. Journal of Agro-Environmental Sciences, 2011, 30(11): 2362?2367 |
[36] | NASER H M, NAGATA O, TAMURA S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan[J]. Soil Science and Plant Nutrition, 2007, 53(1): 95?101 doi: 10.1111/j.1747-0765.2007.00105.x |
[37] | 伍芬琳, 张海林, 李琳, 等. 保护性耕作下双季稻农田甲烷排放特征及温室效应[J]. 中国农业科学, 2008, 41(9): 2703?2709 doi: 10.3864/j.issn.0578-1752.2008.09.018 WU F L, ZHANG H L, LI L, et al. Characteristics of CH4 emission and greenhouse effects in double paddy soil with conservation tillage[J]. Scientia Agricultura Sinica, 2008, 41(9): 2703?2709 doi: 10.3864/j.issn.0578-1752.2008.09.018 |
[38] | 闫翠萍, 张玉铭, 胡春胜, 等. 不同耕作措施下小麦–玉米轮作农田温室气体交换及其综合增温潜势[J]. 中国生态农业学报, 2016, 24(6): 704?715 YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704?715 |
[39] | BODELIER P L E, ROSLEV P, HENCKEL T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421?424 doi: 10.1038/35000193 |
[40] | VERHOEVEN E, DECOCK C, BARTHEL M, et al. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system[J]. Soil Biology and Biochemistry, 2018, 120: 58?69 doi: 10.1016/j.soilbio.2018.01.032 |
[41] | 张雪松, 申双和, 李俊, 等. 华北平原冬麦田土壤CH4的吸收特征研究[J]. 南京气象学院学报, 2006, 29(2): 181?188 ZHANG X S, SHEN S H, LI J, et al. Soil CH4 uptake in winter wheat field in the North China Plain[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(2): 181?188 |
[42] | 秦小光, 蔡炳贵, 吴金水, 等. 土壤温室气体昼夜变化及其环境影响因素研究[J]. 第四纪研究, 2005, 25(3): 376?388 doi: 10.3321/j.issn:1001-7410.2005.03.015 QIN X G, CAI B G, WU J S, et al. Diurnal variations of soil trace gases and related impacting factors[J]. Quaternary Sciences, 2005, 25(3): 376?388 doi: 10.3321/j.issn:1001-7410.2005.03.015 |
[43] | SETIYONO T D, WALTERS D T, CASSMAN K G, et al. Estimating maize nutrient uptake requirements[J]. Field Crops Research, 2010, 118(2): 158?168 doi: 10.1016/j.fcr.2010.05.006 |
[44] | LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366?1381 doi: 10.1111/gcb.12517 |
[45] | 朱利霞. 不同调控措施对旱作农田土壤碳氮及微生物学特性的影响[D]. 杨凌: 西北农林科技大学, 2018 ZHU L X. Effects of different management practices on soil carbon and nitrogen and related microbial processes in rain-fed farmlands[D]. Yangling: Northwest A & F University, 2018 |
[46] | 曹小闯, 李晓艳, 朱练峰, 等. 水分管理调控水稻氮素利用研究进展[J]. 生态学报, 2016, 36(13): 3882?3890 CAO X C, LI X Y, ZHU L F, et al. Effects of water management on rice nitrogen utilization: a review[J]. Acta Ecologica Sinica, 2016, 36(13): 3882?3890 |
[47] | 刘若萱, 贺纪正, 张丽梅. 稻田土壤不同水分条件下硝化/反硝化作用及其功能微生物的变化特征[J]. 环境科学, 2014, 35(11): 4275?4283 LIU R X, HE J Z, ZHANG L M. Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil[J]. Environmental Science, 2014, 35(11): 4275?4283 |
[48] | MICHOTEY V, MéJEAN V, BONIN P. Comparison of methods for quantification of cytochrome cd(1)-denitrifying bacteria in environmental marine samples[J]. Applied and Environmental Microbiology, 2000, 66(4): 1564?1571 doi: 10.1128/AEM.66.4.1564-1571.2000 |
[49] | 汤宏, 张杨珠, 刘杰云, 等. 水分管理对稻田氧化亚氮产生及排放的影响[J]. 湖南农业科学, 2014, (3): 53?55 doi: 10.3969/j.issn.1006-060X.2014.03.019 TANG H, ZHANG Y Z, LIU J Y, et al. Effects of water management on production and emission of nitrous oxide in paddy field[J]. Hunan Agricultural Sciences, 2014, (3): 53?55 doi: 10.3969/j.issn.1006-060X.2014.03.019 |
[50] | 彭世彰, 侯会静, 徐俊增, 等. 节水灌溉对稻田N2O季节排放特征的影响[J]. 农业工程学报, 2011, 27(8): 14?18 doi: 10.3969/j.issn.1002-6819.2011.08.003 PENG S Z, HOU H J, XU J Z, et al. Effects of water-saving irrigation on seasonal characteristics of N2O emission from paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 14?18 doi: 10.3969/j.issn.1002-6819.2011.08.003 |
[51] | JENSEN E S. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues[J]. Biology and Fertility of Soils, 1997, 24(1): 39?44 doi: 10.1007/BF01420218 |
[52] | 牛东, 潘慧, 丛美娟, 等. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响[J]. 麦类作物学报, 2016, 36(12): 1667?1673 doi: 10.7606/j.issn.1009-1041.2016.12.17 NIU D, PAN H, CONG M J, et al. Effect of nitrogen application ratio and straw returning on soil greenhouse gas emission during wheat growing period[J]. Journal of Triticeae Crops, 2016, 36(12): 1667?1673 doi: 10.7606/j.issn.1009-1041.2016.12.17 |
[53] | 潘圣刚, 曹凑贵, 蔡明历, 等. 氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度影响[J]. 农业环境科学学报, 2009, 28(10): 2145?2150 doi: 10.3321/j.issn:1672-2043.2009.10.024 PAN S G, CAO C G, CAI M L, et al. Effects of nitrogen management on rice nitrogen uptake and nitrogen concentrations in the leachate from rice field[J]. Journal of Agro-Environment Science, 2009, 28(10): 2145?2150 doi: 10.3321/j.issn:1672-2043.2009.10.024 |
[54] | 马玉华, 刘兵, 张枝盛, 等. 免耕稻田氮肥运筹对土壤NH3挥发及氮肥利用率的影响[J]. 生态学报, 2013, 33(18): 5556?5564 doi: 10.5846/stxb201304020589 MA Y H, LIU B, ZHANG Z S, et al. Effects of nitrogen management on NH3 volatilization and nitrogen use efficiency under no-tillage paddy fields[J]. Acta Ecologica Sinica, 2013, 33(18): 5556?5564 doi: 10.5846/stxb201304020589 |
[55] | 张庆国, 李鹏飞, 徐丽, 等. 皖中沿江平原水稻田CH4和N2O排放估算及其影响因素分析[J]. 土壤通报, 2012, 43(1): 212?218 ZHANG Q G, LI P F, XU L, et al. Estimation of CH4 and N2O emissions from the paddy fields in Wan-Zhong-Yan-Jiang Plain and analysis of their influence factors[J]. Chinese Journal of Soil Science, 2012, 43(1): 212?218 |
[56] | 柳敏, 宇万太, 姜子绍, 等. 土壤活性有机碳[J]. 生态学杂志, 2006, 25(11): 1412?1417 doi: 10.3321/j.issn:1000-4890.2006.11.022 LIU M, YU W T, JIANG Z S, et al. A research review on soil active organic carbon[J]. Chinese Journal of Ecology, 2006, 25(11): 1412?1417 doi: 10.3321/j.issn:1000-4890.2006.11.022 |
[57] | 黄国宏, 陈冠雄, 韩冰, 等. 土壤含水量与N2O产生途径研究[J]. 应用生态学报, 1999, 10(1): 53?56 doi: 10.3321/j.issn:1001-9332.1999.01.014 HUANG G H, CHEN G X, HAN B, et al. Research on soil moisture content and N2O production pathway[J]. Chinese Journal of Applied Ecology, 1999, 10(1): 53?56 doi: 10.3321/j.issn:1001-9332.1999.01.014 |
[58] | 殷欣, 胡荣桂. 间歇灌溉对湖北省水稻温室气体减排的贡献[J]. 农业工程, 2015, 5(5): 119?123 doi: 10.3969/j.issn.2095-1795.2015.05.035 YIN X, HU R G. Contribution of intermittent irrigation to greenhouse gas mitigation of rice paddy in Hubei Province[J]. Agricultural Engineering, 2015, 5(5): 119?123 doi: 10.3969/j.issn.2095-1795.2015.05.035 |
[59] | 王孟雪, 张忠学. 适宜节水灌溉模式抑制寒地稻田N2O排放增加水稻产量[J]. 农业工程学报, 2015, 31(15): 72?79 doi: 10.11975/j.issn.1002-6819.2015.15.010 WANG M X, ZHANG Z X. Optimal water-saving irrigation mode reducing N2O emission from rice paddy field in cold region and increasing rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 72?79 doi: 10.11975/j.issn.1002-6819.2015.15.010 |