删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于压力-状态-响应模型的寒地粳稻杂交育种后代选择与实现

本站小编 Free考研考试/2022-01-01

刘宝海,
聂守军,
高世伟,
刘晴,
刘宇强,
常汇琳,
马成,
唐铭,
薛英会,
白瑞
黑龙江省农业科学院绥化分院 绥化 152052
基金项目: 黑龙江省“百千万”工程生物育种重大科技专项2020ZX16B01
黑龙江省农业科学院“农业科技创新跨越工程”专项HNK2019CX02

详细信息
作者简介:刘宝海, 主要研究方向为水稻育种与栽培。E-mail: shslbh@163.com
中图分类号:S511

计量

文章访问数:124
HTML全文浏览量:6
PDF下载量:138
被引次数:0
出版历程

收稿日期:2020-09-25
录用日期:2021-01-15
刊出日期:2021-04-01

Selection and realization of hybrid breeding progeny of Japonica rice in cold region based on pressure-state-response model

LIU Baohai,
NIE Shoujun,
GAO Shiwei,
LIU Qing,
LIU Yuqiang,
CHANG Huilin,
MA Cheng,
TANG Ming,
XUE Yinghui,
BAI Rui
Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China
Funds: Heilongjiang Province "Hundred-Thousand-Ten Thousand" Major Science and Technology Project of Engineering Biological Breeding2020ZX16B01
the Special Project of "Agricultural Science and Technology Innovation Leapfrog Project" of Heilongjiang Academy of Agricultural SciencesHNK2019CX02



摘要
HTML全文
(1)(4)
参考文献(43)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为提高育种杂交后代选择效果,引入压力-状态-响应(PSR)模型对影响寒地粳稻杂交育种后代的遗传、环境和选择因素进行探讨。构建1个目标、3个准则和18个指标组成的寒地粳稻杂交育种后代选择概念模型与评价体系,并采用客观熵权和功效评分相组合方法进行综合指数评价。结果表明:在PSR模型设计环境下,‘绥粳18’杂交育种9个世代杂交后代均表现出穗颈瘟权重值最大,其次是倒伏级别,再次是空壳率,寒地生态环境下抗穗颈瘟发病指数、抗倒伏级别和空壳率水平是水稻育种杂交后代选择最重要的考虑指标。PSR系统评价中,各子系统的影响力大小依次是响应子系统(权重为0.6867)>状态子系统(权重为0.2651)>压力子系统(权重为0.0482);各指标值变异系数为0~200.4%,大范围变异利于提高后代选择育种效果。与目前多依据株型理论选择杂交后代系谱相比,运用PSR模型理论与评价体系方法,创建动态压力选择环境,客观评价指标特征,并引入专家决策管理,能够有效克服单纯依靠育种经验、定性定量不结合、多注重性状选择以及响应决策不系统而导致多优性状聚合难、鉴定难、选择效率低等问题,具有较好可行性、可靠性和实用性,可以获得更加合理的寒地水稻育种杂交后代选择方案。本研究结果可为加快寒地优质高产多抗广适突破性水稻新品种选育提供有益参考和技术依据。
关键词:寒地粳稻/
杂交后代/
压力-状态-响应(PSR)模型/
熵权/
选择概念模型
Abstract:To improve the breeding of hybrid offspring, a stress-state-response (PSR) model was used to investigate the genetic, environmental, and selection factors affecting the progeny of japonica hybrid rice in cold regions. A conceptual model and evaluation system for the selection of progeny of japonica hybrid breeding in cold regions with 1 target, 3 criteria, and 18 indices was constructed, and the objective entropy weight and efficacy score were used to evaluate the comprehensive index. The results indicated that nine generations of hybrid offspring of 'Suijing 18' crossbreeding showed the highest weight of neck blast, followed by lodging level, and the lowest was seed setting rate. The indices of resistance to panicle blast, lodging level, and percentage of empty shell were the most important factors for selecting hybrid progenies in cold regions. In the PSR system evaluations, the order of influence was the response subsystem (0.6867) > the state subsystem (0.2651) > the pressure subsystem (0.0482). Meanwhile, the coefficient of variation of the index values ranged from 0 to 200.4%, which was beneficial for enhancing the breeding efficiency of progeny selection through a wide range of variation. The response, stress, and state subsystems were related. Dynamic changes in the environmental pressure conditions represented an important factor to promote changes in the response and state subsystems. The weight analysis of hybrid progeny showed that the order of influence of environmental pressure was neck blast > irrigation water temperature > planting density > fertilizer application. Compared with the current plant-type improvement theory and methods for hybrid offspring character selection, applying the PSR hybrid progeny selection theory and methods on rice breeding in cold regions effectively overcame the problems of multi-optimal trait aggregation, identification, and low selection efficiency due to the lack of breeding experience, qualitative and quantitative combinations, more emphasis on trait selection, and poor response decision making. Systematic, dynamic, and objective scientific planning, with accurate and efficient design, evaluation, and decision-making was realized by PSR, which was concise, practical, efficient, and operational. According to the ecological characteristics of rice farming in cold regions, the variety selection based on natural conditions in different regions differed. The state and response indices in the evaluation system should be adjusted when the theory and method presented here are used to select the hybrid offspring of rice. These principles and methods can also be used in soybean, corn, and other crops, all of which require further exploration. The results of this study provide a useful reference and technical basis for accelerating the breeding of new rice varieties with high quality, high yield, multi-resistance, and wide adaptability in cold regions.
Key words:Japonica rice in cold region/
Hybrid offspring/
Pressure-state-response model/
Entropy weight/
Conseptual selection model

HTML全文


图1黑龙江粳稻杂交后代选择的压力-状态-响应(PSR)概念模型
Figure1.Pressure-state-response (PRS) conceptual model for selection of hybrid progenies of Japonica rice in Heilongjiang Province


下载: 全尺寸图片幻灯片

表1黑龙江粳稻育种杂交后代选择的压力-状态-响应(PSR)评价指标体系
Table1.Pressure-state-response (PSR) evaluation index system for breeding hybrid offspring of Japonica rice in Heilongjiang Province
目标层
Target layer
准则层
Criterion layer
指标层
Index layer
指标说明
Index definition
寒地粳稻育种杂交后代材料选择
Selection of hybrid
offspring
materials for Japonica rice breeding in cold region
压力
Pressure
X1 灌溉水温度
Irrigation water temperature (℃)
灌溉水分冷水(温度为17~18 ℃)和温水(河流自然水)
Irrigation water includes cold water (17-18 ℃) and warm water (natural river water).
X2 化肥施用量
Fertilizer application rate (kg·hm-2)
氮肥、磷肥和钾肥的施用量
Application rates of nitrogen, phosphorus and potassium fertilizers
X3 穗颈瘟诱发
Panicle blast (105·mL-1)
试验区喷施诱发稻瘟病的孢子悬浮液
The spore suspension was sprayed in the test area to induce panicle blast.
X4 种植密度
Planting density (holes·m-2)
密度=单位面积/(株距×行距)
Density = unit area / (plants spacing × rows spacing)
状态
State
X5 倒伏级别
Lodging level
根据倾斜植株群体面积占群体总面积的百分率和单株倾斜度共同确定。
Determined by percentage of the tilted plant population area to the total population area and the tilt of the individual plant
X6 活动积温
Active accumulated temperature (℃)
水稻生育时期内≥10 ℃活动温度的总和
Sum of temperature above 10 ℃ during the growth period of rice
X7 产量
Yield (kg·hm-2)
按稻谷14%标准含水量折算的实测产量
Calculated with actually measured yield and 14% standard water content
X8 胶稠度
Gel consistency (mm)
评价大米食味淀粉胶胶体特性的一项指标
An index to evaluate the colloidal properties of rice starch gelatine
X9 直链淀粉含量
Amylosecontent (%)
影响稻米糊化过程中食味黏度的变化
Affect the change of taste and viscosity during rice gelatinization
X10 整精米率
Whole rice rate (%)
精米占稻谷重量的百分率
Weight percentage of polished rice to total rice
X11 穗颈瘟发病指数(级)
Panicle disease index (level)
按国际水稻研究所“Standard Evaluation System for Rice”(1996年)评价
Evaluate according “Standard Evaluation System for Rice” released in 1996 by the International Rice Research Institute
X12 千粒重
1000-grain weight (g)
以克表示的1000粒稻谷充实籽粒的重量
Weight of a thousand grains of rice with full grain expressed in gram
X13 空壳率
Empty shell rate (%)
水稻结实度情况
Indicate the rice seed setting
X14 糙米率
Brown rice rate (%)
糙米重量占稻谷重量的百分率
Weight percentage of brown rice in total rice
X15 分蘖能力
Tillering ability (ear·plant-1)
表明基本苗成熟后分蘖的能力
Indicate the ability of tillering after the basic seedling matures
响应
Response
X16 后代材料入选率
Selection rate of offspring materials (%)
入选后代数(F2-F6单株、F7及以后世代株系)数量占相应种植总数的百分率
Percentage of selected descendants to the total number of plantings (individual plants of F2-F6, strains of F7 and later generations)
X17 田间管理程度
Field management level (fraction)
种植方案实施完成效果
Effect of the implementation of planting plan
X18 调查考种程度
Survey test level (fraction)
各性状指标田间测定和实验室考种分析完成效果
Results of field determination and laboratory test analysis of various traits


下载: 导出CSV
表2‘绥粳18’水稻选育过程中F2-F7及鉴定第1~3年杂交后代的11个评价指标权重值
Table2.Weights of 11 evaluation indicators of hybrid offspring materials of F2-F7 and the first to third years of appraisal during breeding and selection of rice cultivar 'Suijing 18'
指标
Indicator
F2 F3 F4 F5 F6 F7 鉴定第1年
First year of
appraisal
鉴定第2年
Second year of
appraisal
鉴定第3年
Third year of
appraisal
X5 0.2575 0.1845 0.1537 0.1782 0.1551 0.1053 0.1499 0.1126 0.1124
X6 0.0024 0.0020 0.0015 0.0009 0.0008 0.0006 0.0004 0.0003 0.0001
X7 0.0182 0.0084 0.0063 0.0019 0.0012 0.0003 0.0011 0.0004 0.0005
X8 0.0066 0.0035 0.0028 0.0041 0.0012 0.0006 0.0005 0.0003 0.0007
X9 0.0062 0.0055 0.0070 0.0083 0.0032 0.0016 0.0015 0.0002 0.0001
X10 0.0045 0.0028 0.0020 0.0028 0.0020 0.0014 0.0010 0.0003 0.0004
X11 0.5047 0.6929 0.7530 0.7229 0.7778 0.8482 0.7969 0.8481 0.8463
X12 0.0019 0.0005 0.0003 0.0006 0.0005 0.0003 0.0002 0.0002 0.0003
X13 0.1573 0.0630 0.0493 0.0473 0.0387 0.0290 0.0407 0.0269 0.0260
X14 0.0014 0.0006 0.0007 0.0005 0.0004 0.0003 0.0006 0.0003 0.0003
X15 0.0392 0.0363 0.0235 0.0326 0.0191 0.0126 0.0073 0.0104 0.0129
X5: 倒伏级别; X6: 活动积温; X7: 产量; X8: 胶稠度; X9: 直链淀粉含量; X10: 整精米率; X11: 穗颈瘟发病指数; X12: 千粒重; X13: 空壳率; X14: 糙米率; X15: 分蘖能力。X5: lodging level; X6: active accumulated temperature; X7: yield; X8: gel consistency; X9: amylose content; X10: whole rice rate; X11: panicle disease index; X12: 1000-grain weight; X13: empty shell rate; X14: brown rice rate; X15: tillering ability.


下载: 导出CSV
表3‘绥粳18’水稻选育过程中F2-F7及鉴定第1~3年杂交后代材料功效综合指数与排序
Table3.Comprehensive indexes and ranking of the hybrid offspring materials of F2-F7 and the first to third years of appraisal of during breeding and selection of rice cultivar 'Suijing 18'
代号
Code
综合指数
Composite index
排序
Order
代号
Code
综合指数
Composite index
排序
Order
代号
Code
综合指数
Composite index
排序
Order
代号
Code
综合指数
Composite index
排序
Order
02-2350 0.9184 1 04-4002 0.9652 4 06-6045 0.8153 40 jd08-009 0.0419 18
02-2161 0.8929 2 04-4077 0.9633 5 06-6049 0.8128 41 jd08-018 0.0395 19
02-2435 0.8844 3 04-4075 0.6545 53 06-6067 0.8101 42 jd08-016 0.0378 20
02-2057 0.8760 4 04-4010 0.6529 54 06-6060 0.8036 43 jd09-005 0.9956 1
02-2417 0.8751 5 04-4101 0.6509 55 07-7078 0.9988 1 jd09-010 0.9778 2
02-2223 0.5092 262 04-4050 0.6459 56 07-7051 0.9790 2 jd09-003 0.9736 3
02-2246 0.5051 263 04-4104 0.6350 57 jd08-007 0.9930 1 jd09-004 0.7098 4
02-2392 0.5033 264 05-5061 0.9833 1 jd08-014 0.9852 2 jd09-007 0.7055 5
022380 0.5022 265 05-5009 0.9698 2 jd08-020 0.9692 3 jd09-006 0.7048 6
02-2453 0.5002 266 05-5003 0.9686 3 jd08-003 0.7261 4 jd09-002 0.7043 7
03-3137 0.9548 1 05-5065 0.9662 4 jd08-013 0.7255 5 jd09-009 0.7033 8
03-3112 0.9402 2 05-5048 0.9639 5 jd08-011 0.7214 6 jd09-008 0.6851 9
03-3076 0.9341 3 05-5019 0.6315 55 jd08-002 0.7196 7 jd09-001 0.5923 10
03-3047 0.9336 4 05-5006 0.6298 56 jd08-010 0.7152 8 jd10-003 0.9944 1
03-3030 0.9181 5 05-5075 0.6275 57 jd08-019 0.7113 9 jd10-008 0.9908 2
03-3115 0.6246 96 05-5099 0.6259 58 jd08-012 0.7107 10 jd10-002 0.7117 3
03-3039 0.6210 97 05-5035 0.6246 59 jd08-004 0.6895 11 jd10-004 0.7089 4
03-3005 0.6167 98 06-6036 0.9853 1 jd08-017 0.5755 12 jd10-005 0.7071 5
03-3083 0.6122 99 06-6003 0.9827 2 jd08-007 0.5551 13 jd10-007 0.6925 6
03-3064 0.6081 100 06-6024 0.9819 3 jd08-006 0.1881 14 jd10-006 0.6845 7
04-4004 0.9757 1 06-6019 0.9811 4 jd08-015 0.1834 15 jd10-001 0.5783 8
04-4033 0.9684 2 06-6048 0.9797 5 jd08-008 0.1682 16
04-4028 0.9657 3 06-6029 0.8176 39 jd08-005 0.0438 17
表中“代号”表示杂交后代材料田间代码, 如02-2350表示2002年F2代第350号材料, 07-7078表示2007年F7代第78号材料, Jd08-007表示2008年鉴定第1年的第7号材料, jd10-003表示2010年鉴定第3年的第3号材料。The “code” in the table shows the field code of the hybrid offspring materials, for example, 02-2350 is the No. 350 material of the F2 generation in 2002, 07-7078 is the No. 78 material of the F7 generation in 2007, Jd08-007 is the No. 7 material of the first year of appraisal in 2008, and Jd10-003 is the No. 3 material of the third year of appraisal in 2010.


下载: 导出CSV
表4‘绥粳18’水稻选育过程中杂交后代压力-状态-响应(PSR)评价体系的18项性状的指标值、信息熵和权重
Table4.Values, information entropies and weights of 18 indicators of pressure-state-response (PRS) evaluation system of hybrid offspring materials during breeding and selection of rice cultivar 'Suijing 18'
准则层(权重)
Criterion layer (weight)
指标
Indicator
单位
Unit
取值范围
Range
均值
Average
标准差
Standard deviation
变异系数
Coefficient of variance (%)
信息熵
Information entropy
权重
Weight
压力
Pressure (0.0482)
X1 [17, 24] 20.6 3.5 17.0 0.9979 0.0121
X2 kg·hm-2 [260, 275] 282.9 12.7 4.5 0.9998 0.0009
X3 ×105·mL-1 [0, 1] 1.0 0.2 20.1 0.9942 0.0329
X4 穴·m-2 [25, 38] 37.4 2.6 7.0 0.9996 0.0023
状态
State (0.2651)
X5 [1.0, 3.0] 1.5 0.5 35.9 0.9908 0.0523
X6 [2100, 2650] 2440.7 79.4 3.3 0.9999 0.0004
X7 kg·hm-2 [5706.2, 9800.1] 7955.1 635.5 8.0 0.9995 0.0027
X8 mm [60.1, 82.5] 73.5 3.9 5.3 0.9998 0.0012
X9 % [14.6, 22.3] 17.5 1.1 6.1 0.9997 0.0015
X10 % [61.1, 75.3] 68.9 3.1 4.5 0.9999 0.0008
X11 [0, 5.0] 2.3 1.4 58.7 0.9696 0.1733
X12 g [24.0, 27.5] 26.0 0.7 2.5 1.0000 0.0003
X13 % [2.4, 28.1] 14.3 3.4 24.0 0.9957 0.0243
X14 % [72.3, 87.3] 81.4 2.0 2.5 1.0000 0.0003
X15 ear·plant-1 [10.0, 24.0] 15.8 2.2 14.0 0.9986 0.0080
响应
Response (0.6867)
X16 % [0.5, 80.0] 5.2 10.5 200.4 0.8795 0.6867
X17 fraction [95.0, 95.0] 95.0 0.0 0.0 1.0000 0.0000
X18 Fraction [95.0, 97.0] 95.7 1.0 1.0 1.0000 0.0000
X1: 灌溉水温度; X2: 化肥施用量; X3: 穗颈瘟诱发; X4: 密度种植度; X5: 倒伏级别; X6: 活动积温; X7: 产量; X8: 胶稠度; X9: 直链淀粉含量; X10: 整精米率; X11: 穗颈瘟发病指数; X12: 千粒重; X13: 空壳率; X14: 糙米率; X15: 分蘖能力; X16: 后代材料入选率; X17: 田间管理程度; X18: 调查考种程度。X1: irrigation water temperature; X2: fertilizer application rate; X3: panicle blast; X4: planting density; X5: lodging level; X6: active accumulated temperature; X7: yield; X8: gel consistency; X9: amylose content; X10: whole rice rate; X11: panicle disease index; X12: 1000-grain weight; X13: empty shell rate; X14: brown rice rate; X15: tillering ability; X16: selection rate of offspring material; X17: field management level; X18: survey test level.


下载: 导出CSV

参考文献(43)
[1]潘国君. 寒地粳稻育种[M]. 北京: 中国农业出版社, 2014: 14
PAN G J. Japonica Rice Breeding in Cold Regions[M]. Beijing: China Agriculture Press, 2014: 14
[2]王秋菊, 张玉龙, 刘峰, 等. 黑龙江省水稻品种跨积温区种植的产量和品质变化[J]. 应用生态学报, 2013, 24(5): 1381-1386 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201305029.htm
WANG Q J, ZHANG Y L, LIU F, et al. Changes of rice yield and quality in different accumulated temperature zones in Heilongjiang Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1381-1386 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201305029.htm
[3]刘宝海. 寒地生态条件下水稻育种方向分析[J]. 北方水稻, 2015, 45(2): 61-63 doi: 10.3969/j.issn.1673-6737.2015.02.028
LIU B H. Analysis of rice breeding in cold ecological conditions[J]. North Rice, 2015, 45(2): 61-63 doi: 10.3969/j.issn.1673-6737.2015.02.028
[4]代滢芸. 2018年黑龙江省水稻市场分析报告[J]. 黑龙江粮食, 2019, (5): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-HLLK201905011.htm
DAI Y Y. Analysis report of rice market in Heilongjiang Province in 2018[J]. Heilongjiang Grain, 2019, (5): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-HLLK201905011.htm
[5]国家水稻数据中心. 中国水稻品种及其系谱数据库[EB/OL]. [2019-02-15]. http://www.ricedata.cn/variety/identified/hlj_1.htm
China Rice Date Center. Database of rice varieties and genealogies in China[EB/OL]. [2019-02-15]. http://www.ricedata.cn/variety/identified/hlj_1.htm
[6]林海, 李婷婷, 童汉华, 等. 我国水稻主栽品种演替分析[J]. 中国水稻科学, 2018, 32(6): 565-571 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201806009.htm
LIN H, LI T T, TONG H H, et al. Analysis on evolution of major rice cultivars in China[J]. Chinese Journal of Rice Science, 2018, 32(6): 565-571 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201806009.htm
[7]罗斌, 潘大宇, 高权, 等. 基于物联网技术的寒地水稻程控催芽系统设计与试验[J]. 农业工程学报, 2018, 34(12): 180-185 doi: 10.11975/j.issn.1002-6819.2018.12.021
LUO B, PAN D Y, GAO Q, et al. Design and experiment of rice program control germination system in cold region based on internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 180-185 doi: 10.11975/j.issn.1002-6819.2018.12.021
[8]吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857 https://www.cnki.com.cn/Article/CJFDTOTAL-YCZZ201810006.htm
WU B, HU W, XING Y Z. The history and prospect of rice genetic breeding in China[J]. Hereditas, 2018, 40(10): 841-857 https://www.cnki.com.cn/Article/CJFDTOTAL-YCZZ201810006.htm
[9]纪龙, 申红芳, 徐春春, 等. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201907003.htm
JI L, SHEN H F, XU C C, et al. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis[J]. Acta Agronomica Sinica, 2019, 45(7): 982-992 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201907003.htm
[10]邹江石, 吕川根. 水稻超高产育种的实践与思考[J]. 作物学报, 2005, 31(2): 254-258 doi: 10.3321/j.issn:0496-3490.2005.02.022
ZOU J S, LYU C G. Practice and thinking on rice breeding for high yield[J]. Acta Agronomica Sinica, 2005, 31(2): 254-258 doi: 10.3321/j.issn:0496-3490.2005.02.022
[11]陈温福, 徐正进, 张龙步, 等. 北方粳型稻超高产育种理论与实践[J]. 中国农业科学, 2007, 40(5): 869-874 doi: 10.3321/j.issn:0578-1752.2007.05.001
CHEN W F, XU Z J, ZHANG L B, et al. Theories and practices of breeding japonica rice for super high yield[J]. Scientia Agricultura Sinica, 2007, 40(5): 869-874 doi: 10.3321/j.issn:0578-1752.2007.05.001
[12]徐海, 宫彦龙, 夏原野, 等. 中日水稻品种杂交后代的株型性状与产量和品质的关系[J]. 中国水稻科学, 2016, 30(3): 283-290 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201603008.htm
XU H, GONG Y L, XIA Y Y, et al. Relation of plant type traits with yield and quality in the RIL population derived from cross between Chinese rice variety and Japanese rice variety[J]. Chinese Journal of Rice Science, 2016, 30(3): 283-290 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201603008.htm
[13]李红宇, 郑桂萍, 刘梦红, 等. 北方粳稻穗重指数及其与产量品质关系的研究[J]. 华北农学报, 2016, 31(1): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201601029.htm
LI H Y, ZHENG G P, LIU M H, et al. Differences of panicle weight index among varieties and its relationship with yield and quality of japonica rice in northern China[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(1): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201601029.htm
[14]李洪亮, 柴永山, 孙玉友, 等. 黑龙江省水稻稻瘟病研究现状及抗病育种[J]. 中国农业大学学报, 2016, 21(5): 25-33 https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201605004.htm
LI H L, CHAI Y S, SUN Y Y, et al. Resistance breeding and research status of rice blast in Heilongjiang Province[J]. Journal of China Agricultural University, 2016, 21(5): 25-33 https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201605004.htm
[15]饶玉春, 杨窑龙, 黄李超, 等. 水稻耐冷胁迫的研究进展[J]. 分子植物育种, 2013, 11(3): 443-450 https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201303026.htm
RAO Y C, YANG Y L, HUANG L C, et al. Research progress on cold stress in rice[J]. Molecular Plant Breeding, 2013, 11(3): 443-450 https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201303026.htm
[16]李亚非, 王连敏, 曹桂兰, 等. 不同低温胁迫下粳稻耐冷种质的孕穗期耐冷性比较[J]. 植物遗传资源学报, 2010, 11(6): 691-697 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201006007.htm
LI Y F, WANG L M, CAO G L, et al. Comparison of cold tolerance at the booting stage for cold tolerant japonica rice germplasm under different cold stress[J]. Journal of Plant Genetic Resources, 2010, 11(6): 691-697 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201006007.htm
[17]王士强, 陈书强, 赵海红, 等. 孕穗期低温胁迫对寒地水稻产量构成与株型特征的影响[J]. 沈阳农业大学学报, 2016, 47(2): 129-134 doi: 10.3969/j.issn.1008-9713.2016.02.001
WANG S Q, CHEN S Q, ZHAO H H, et al. Effects of booting stage cold stress on yield components and plant type characteristics of rice in cold region[J]. Journal of Shenyang Agricultural University, 2016, 47(2): 129-134 doi: 10.3969/j.issn.1008-9713.2016.02.001
[18]张明聪, 刘元英, 罗盛国, 等. 养分综合管理对寒地水稻抗倒伏性能的影响[J]. 中国农业科学, 2010, 43(21): 4536-4542 doi: 10.3864/j.issn.0578-1752.2010.21.025
ZHANG M C, LIU Y Y, LUO S G, et al. Effects of integrated nutrient management on lodging resistance of rice in cold area[J]. Scientia Agricultura Sinica, 2010, 43(21): 4536-4542 doi: 10.3864/j.issn.0578-1752.2010.21.025
[19]从夕汉, 施伏芝, 阮新民, 等. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响[J]. 应用生态学报, 2017, 28(4): 1219-1226 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201704020.htm
CONG X H, SHI F Z, RUAN X M, et al. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1219-1226 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201704020.htm
[20]薛欣欣, 李小坤. 施钾量对水稻干物质积累及吸钾规律的影响[J]. 江西农业大学学报, 2018, 40(5): 905-913 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201805001.htm
XUE X X, LI X K. Effects of potassium application levels on the characteristics of dry matter accumulation and potassium uptake in rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(5): 905-913 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201805001.htm
[21]雷财林, 张国民, 程治军, 等. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略[J]. 作物学报, 2011, 37(1): 18-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201101003.htm
LEI C L, ZHANG G M, CHENG Z J, et al. Pathogenic races and virulence gene structure of Magnaporthe oryzae population and rice breeding strategy for blast resistance in Heilongjiang Province[J]. Acta Agronomica Sinica, 2011, 37(1): 18-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201101003.htm
[22]FAO. Land quality indicators and their use in sustainable agriculture and rural development[R]. Rome: FAO, 1997
[23]NERI A C, DUPIN P, SáNCHEZ L E. A pressure-state-response approach to cumulative impact assessment[J]. Journal of Cleaner Production, 2016, 126: 288-298. doi: 10.1016/j.jclepro.2016.02.134
[24]曲衍波, 朱伟亚, 郧文聚, 等. 基于压力-状态-响应模型的土地整治空间格局及障碍诊断[J]. 农业工程学报, 2017, 33(3): 241-249 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201703033.htm
QU Y B, ZHU W Y, YUN W J, et al. Land consolidation spatial pattern and diagnosis of its obstacle factors based on pressure-state-response model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 241-249 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201703033.htm
[25]王鹏, 王亚娟, 刘小鹏, 等. 基于PSR模型的生态移民安置区土地利用系统健康评价——以红寺堡区为例[J]. 水土保持研究, 2018, 25(6): 270-276 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201806040.htm
WANG P, WANG Y J, LIU X P, et al. Evaluation of health of land use system in ecological resettlement area based on PSR model-A case study of Hongsibu area[J]. Research of Soil and Water Conservation, 2018, 25(6): 270-276 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201806040.htm
[26]刘畅, 冯宝平, 张展羽, 等. 基于压力-状态-响应的熵权-物元水生态文明评价模型[J]. 农业工程学报, 2017, 33(16): 1-7 doi: 10.11975/j.issn.1002-6819.2017.16.001
LIU C, FENG B P, ZHANG Z Y, et al. Evaluation model of water ecological civilization based on pressure-state-response matter element model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 1-7 doi: 10.11975/j.issn.1002-6819.2017.16.001
[27]马玲玲, 周林飞, 张婷婷, 等. 基于压力-状态-响应模型的大伙房水库水源地安全评价研究[J]. 沈阳农业大学学报, 2018, 49(1): 114-120 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY201801021.htm
MA L L, ZHOU L F, ZHANG T T, et al. Water source security evaluation of Dahuofang reservoir based on PSR model[J]. Journal of Shenyang Agricultural University, 2018, 49(1): 114-120 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY201801021.htm
[28]BOCKSTALLER C, VERTéS F, FIORELLI J L, et al. Tools for evaluating and regulating nitrogen impacts in livestock farming systems[J]. Advances in Animal Biosciences, 2014, 5(S1): 49-54
[29]黄备, 魏娜, 孟伟杰, 等. 基于压力-状态-响应模型的辽宁省长海海域海洋生物多样性评价[J]. 生物多样性, 2016, 24(1): 48-54 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201601007.htm
HUANG B, WEI N, MENG W J, et al. Marine biodiversity evaluation based on the pressure-state-response (PSR) model of Changhai county, Liaoning Province[J]. Biodiversity Science, 2016, 24(1): 48-54 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201601007.htm
[30]雷勋平, 吴杨, 叶松, 等. 基于熵权可拓决策模型的区域粮食安全预警[J]. 农业工程学报, 2012, 28(6): 233-239 doi: 10.3969/j.issn.1002-6819.2012.06.038
LEI X P, WU Y, YE S, et al. Regional grain security pre-warning based on entropy weight extension decision model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 233-239 doi: 10.3969/j.issn.1002-6819.2012.06.038
[31]余健, 房莉, 仓定帮, 等. 熵权模糊物元模型在土地生态安全评价中的应用[J]. 农业工程学报, 2012, 28(5): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201205044.htm
YU J, FANG L, CANG D B, et al. Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201205044.htm
[32]杜栋, 庞庆华, 吴炎. 现代综合评价方法与案例精选[M]. 第2版. 北京: 清华大学出版社, 2008: 10-30
DU D, PANG Q H, WU Y. Selection of Modern Comprehensive Evaluation Methods and Cases[M]. 2nd ed. Beijing: Tsinghua University Press, 2008: 10-30
[33]刘宝海, 聂守军, 高世伟. 寒地香粳水稻主栽品种绥粳18的选育难点与创新点[J]. 中国稻米, 2018, 24(5): 35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201805008.htm
LIU B H, NIE S J, GAO S W. Analysis on the Breeding Difficulty and Innovation Points of New Aromatic Rice Suigeng 18[J]. China Rice, 2018, 24(5): 35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201805008.htm
[34]张军以, 苏维词, 张凤太. 基于PSR模型的三峡库区生态经济区土地生态安全评价[J]. 中国环境科学, 2011, 31(6): 1039-1044 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201106035.htm
ZHANG J Y, SU W C, ZHANG F T. Regional land ecological security evaluation in the case of Chongqing Three Gorges Reservoir ecological economy area based on the PSR model[J]. China Environmental Science, 2011, 31(6): 1039-1044 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201106035.htm
[35]刘华招, 步金宝, 宋微. 寒地半直立耐密型早粳稻设计与原理[J]. 现代化农业, 2013, (9): 30-31 https://www.cnki.com.cn/Article/CJFDTOTAL-XDHY201309016.htm
LIU H Z, BU J B, SONG W. Design and principle of semi- upright early Japonica rice in cold region[J]. Modernizing Agriculture, 2013, (9): 30-31 https://www.cnki.com.cn/Article/CJFDTOTAL-XDHY201309016.htm
[36]徐正进, 陈温福. 中国北方粳型超级稻研究进展[J]. 中国农业科学, 2016, 49(2): 239-250 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201602005.htm
XU Z J, CHEN W F. Research progress and related problems on japonica super rice in northern China[J]. Scientia Agricultura Sinica, 2016, 49(2): 239-250 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201602005.htm
[37]徐海, 宫彦龙, 夏原野, 等. 中日水稻品种杂交后代株型性状的变化及其相互关系[J]. 中国水稻科学, 2015, 29(4): 363-372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201504005.htm
XU H, GONG Y L, XIA Y Y, et al. Variations in plant type traits and their relationship of progeny derived from the cross between Chinese rice variety and Japanese rice variety[J]. Chinese Journal of Rice Science, 2015, 29(4): 363-372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201504005.htm
[38]左伟, 周慧珍, 王桥. 区域生态安全评价指标体系选取的概念框架研究[J]. 土壤, 2003, 35(1): 2-7 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200301001.htm
ZUO W, ZHOU H Z, WANG Q. Conceptual framework for selection of an indicator system for assessment of regional ecological safety[J]. Soils, 2003, 35(1): 2-7 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200301001.htm
[39]王玉图, 王友绍, 李楠, 等. 基于PSR模型的红树林生态系统健康评价体系——以广东省为例[J]. 生态科学, 2010, 29(3): 234-241 https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201003008.htm
WANG Y T, WANG Y S, LI N, et al. The assessment system of mangrove ecosystem health applying the PSR model: A case study of Guangdong Province[J]. Ecological Science, 2010, 29(3): 234-241 https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201003008.htm
[40]肖国樱, 肖友伦, 李锦江, 等. 高效是当前水稻育种的主导目标[J]. 中国水稻科学, 2019, 33(4): 287-292 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201904001.htm
XIAO G Y, XIAO Y L, LI J J, et al. High efficiency is a dominant target for current rice breeding[J]. Chinese Journal of Rice Science, 2019, 33(4): 287-292 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201904001.htm
[41]潘国君, 刘传雪, 张淑华, 等. 寒地早粳稻"一早三抗"新株型育种理论与实践[J]. 黑龙江农业科学, 2020, (12): 1-6
PAN G J, LIU C X, ZHANG S H, et al. Theory and practice for the "one early maturing and three resistances" new plant type breeding of early Japonica rice in cold region[J]. Heilongjiang Agricultural Sciences, 2020, (12): 1-6
[42]姜长鉴, 莫惠栋. 自花授粉作物育种中分离世代的选择效应[J]. 江苏农学院学报, 1990, 11(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX199001000.htm
JIANG C J, MO H D. Selection effects in segregating generation of breeding population for self-fertilized crops[J]. Journal of JIANGSU Agricultural college, 1990, 11(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX199001000.htm
[43]全国各主要农作物推广面积前5的品种及分布图[EB/OL]. 智种网, [2020-03-25]. https://www.sohu.com/a/360321288_225946
The varieties and distribution map of the top 5 of the national main crops extension area[EB/OL]. Smartseed, [2020-03-25]. https://www.sohu.com/a/360321288_225946

相关话题/指标 生态 材料 科学 鉴定