檀康达1, 2,
郑文波1,
马林1,
宋献方3,
唐常源4,
胡春胜1
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.中国科学院地理科学与资源研究所/中国科学院陆地水循环及地表过程重点实验室 北京 100101
4.中山大学地理与规划学院 广州 510275
基金项目: 国家科技重大专项项目2016YFD0800100
国家科技重大专项项目2018YFD0800306
国家自然科学基金项目42071053
国家自然科学基金项目41530859
河北省****科学基金D2019503072
详细信息
作者简介:王仕琴, 主要从事水循环和地下水环境研究。E-mail:sqwang@sjziam.ac.cn
中图分类号:X523计量
文章访问数:295
HTML全文浏览量:14
PDF下载量:163
被引次数:0
出版历程
收稿日期:2020-08-15
录用日期:2020-09-07
刊出日期:2021-01-01
Regional characteristics of nitrate sources and distributions in the shallow groundwater of the Lake Baiyangdian watershed
WANG Shiqin1,,,TAN Kangda1, 2,
ZHENG Wenbo1,
MA Lin1,
SONG Xianfang3,
TANG Changyuan4,
HU Chunsheng1
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Water Cycle and Related Land Surface Processes, Chinese Academy of Sciences/Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
4. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
Funds: the National Science and Technology Major Project of China2016YFD0800100
the National Science and Technology Major Project of China2018YFD0800306
the National Natural Science Foundation of China42071053
the National Natural Science Foundation of China41530859
the Science Fund for Distinguished Young Scholars of Hebei ProvinceD2019503072
More Information
Corresponding author:WANG Shiqin, E-mail: sqwang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:白洋淀位于雄安新区规划的核心范围,地下水是白洋淀流域主要的用水水源。由于白洋淀上游工业、生活污水的排放和农田肥料过量施用等农业面源引起的硝酸盐污染来源多样,使得流域内地下水硝酸盐污染较为普遍。然而,目前对全流域尺度地下水硝酸盐分布特征及来源仍不明晰。本文在分析过去近10年地表水和地下水硝酸盐数据的基础上,于2016年12月采集了平原区浅层地下水样品,结合水化学和硝酸盐氮同位素,从全流域尺度解析浅层地下水硝酸盐污染分布的时空差异和不同来源氮对地下水硝酸盐影响的程度。研究表明:山区典型流域河谷沉积带地下水硝酸盐浓度高值主要受农村厕所粪污水和局地污水排放影响(最高达313 mg·L-1),而历史时期农田有机肥施用是近年来地下水硝酸盐普遍升高的原因;雨季降水淋滤作用使地下水硝酸盐浓度明显升高,硝酸盐超标率大于旱季的2倍以上。平原区地貌类型控制着不同来源地下水硝酸盐的空间分布和迁移转化。2016年12月平原区130个浅层地下水硝酸盐超标率为21.5%,从上游到下游不同地貌类型地下水硝酸盐浓度中值呈现下降趋势:洪积扇(42.4 mg·L-1)>冲洪积扇(24.1 mg·L-1)>冲洪积平原(6.0 mg·L-1)和河道带(6.2 mg·L-1),而硝酸盐氮同位素中值呈现上升趋势:洪积扇(12.8‰)和冲洪积扇(11.3‰) < 冲洪积平原(16.7‰) < 河道带(20.9‰),说明从上游到下游地下水硝酸盐反硝化作用增强。其中山前平原洪积扇和冲洪积扇地区渗透性较好,地下水硝酸盐超标率高达33.3%和34.0%,主要来源于污水和有机肥。湖泊洼淀区典型生活和工业污水河周边,地下水硝酸盐则存在工业、生活和化肥多污染源并存的特征,且随着地表治污措施的影响地表水和地下水硝酸盐浓度变化较大,污水侧渗导致河道周边地下水硝酸盐浓度较高,距河道较远含水层强烈的还原条件使地下水硝酸盐浓度降低(< 10 mg·L-1),污染风险较低。鉴于以上不同区域地下水硝酸盐脆弱性程度和风险水平的差异,提出了对白洋淀流域上游山区、山前平原洪积/冲洪积扇区、湖泊洼淀污水影响区等硝酸盐脆弱区实施区域分异农田面源污染和水环境整治及管理的建议,为雄安新区水环境安全保障提供科学依据。
关键词:浅层地下水/
硝酸盐时空分布/
硝酸盐来源/
对策和建议/
白洋淀流域
Abstract:Lake Baiyangdian is located in Xiong'an New Area, China, where groundwater is the primary water supply. Groundwater nitrate (NO3-) contamination is common in the Baiyangdian Lake watershed because of industrial and domestic wastewater discharge and over-application of agricultural fertilizer. However, the source characteristics and NO3- distribution across the entire watershed are still unclear. In this study, NO3- samples collected from rivers and shallow groundwater over the past decade were analyzed. Samples were also collected in December 2016 from the Lake Baiyangdian watershed area, and the spatio-temporal NO3- distributions of groundwater and the effects of various sources on groundwater NO3- were analyzed using water chemical ions and stable nitrate nitrogen isotopes (δ15N-NO3-). The results showed that the NO3- concentration in shallow groundwater differed, and the nitrogen sources had variable effects, particularly from the hills to the plains. In the hilly area, high NO3- concentrations measured in the alluvial valley groundwater were attributed to local rural sewage, with the highest NO3- concentration of 313 mg·L-1; while the regional farmland manure application over several decades was the main cause of commonly high groundwater NO3- concentration in recent years. Rainy season leaching led to NO3- concentrations two times greater than that during the dry season, which exceeded the World Health Organization's (WHO) standard (50 mg·L-1) and threatened downstream water quality safety. Of the shallow groundwater samples collected in the plains in December 2016, 21.5% had NO3- concentrations exceeding the WHO standard. The median groundwater nitrate concentrations trended downward from upstream to downstream in geomorphological type (proluvial fan: 42.4 mg·L-1 > alluvial-proluvial fan: 24.1 mg·L-1 > alluvial-proluvial plain: 6.0 mg·L-1 and river zone: 6.2 mg·L-1), but the median δ15N-NO3 isotopes trended upward (proluvial fan: 12.8‰ and alluvial-proluvial fan: 11.3‰ < alluvial-proluvial plain: 16.7‰ < river zone: 20.9‰), indicating that denitrification increased from upstream to downstream. High aquifer sediment permeability in the proluvial fan and alluvial-proluvial fan regions increase the risk of nitrate leaching into the aquifer. Sewage (33.3%) and manure (34.0%) were primary sources of groundwater nitrate and caused the deviation from the WHO standard rate. In regions with lakes and depressions, groundwater nitrate was affected by industrial and domestic sources and fertilization, and, compared to other regions, groundwater nitrate was higher near the domestic and industrial wastewater river (but also had drastically different surface pollution control measures). However, the reduced conditions in other lake and depression regions lowered the groundwater nitrate concentration (< 10 mg·L-1). This study provides suggestions for managing nonpoint source pollution in the Lake Baiyangdian watershed shallow groundwater based on the regional source characteristics and nitrate distribution, particularly for vulnerable places, such as hilly areas, the proluvial/alluvial-proluvial fan region of the piedmont plain, and wastewater influence areas.
Key words:Shallow groundwater/
Spatio-temporal distribution of nitrate in groundwater/
Sources of nitrate/
Strategy and recommendation/
Lake Baiyangdian watershed
HTML全文

图1白洋淀流域地形地貌和采样点(图中圆点)分布图
Figure1.Map of geographic location and topography and distribution of sampling points (dots in the figure) of the Lake Baiyangdian (BYD) watershed


图2研究区水文地质剖面图[23](见图 1剖面E-E′位置)
Figure2.Overview of the typical hydrogeological section (the section E-E′ in the figure 1) of the study area


图3白洋淀流域地下水硝酸盐浓度分布
Figure3.Nitrate concentration distribution of groundwater in the Lake Baiyangdian watershed


图4白洋淀流域不同地区不同时期地表水和地下水硝酸盐浓度Box-Whisker统计图(中值线上面的数字为中值, 未显示极值)
a:沙河流域; b:北易水河流域; c:府河周边; d:唐河污水库周边; e:白洋淀西部平原区; f:白洋淀流域平原区。
Figure4.Box-Whisker statistical charts of nitrate concentration in surface water and groundwater in different regions and periods in the Lake Baiyangdian watershed (Number above the median line in the box is mid-value. Outliers are not shown.)
a: River Sha basin; b: River Beiyishui watershed; C: River Fu; d: Tanghe Wastewater Reservoir; e: plain area in west of the Lake Baiyangdian; f: plain area of the Lake Baiyangdian watershed.


图5白洋淀流域不同地区不同时期地表水和地下水硝酸盐氮同位素Box-Whisker统计图(中值线上面的数字为中值, 图中未显示极值)
a:府河周边; b:唐河污水库周边; c:白洋淀流域平原区地下水。
Figure5.Box-Whisker statistical charts of nitrogen isotopes in surface water and groundwater nitrate in different regions and periods of the Lake Baiyangdian watershed (Number above the median line in the box is mid-value. Outliers are not shown.)
a: River Fu; b: Tanghe Wastewater Reservoir; c: Groundwater in the plain area of the Lake Baiyangdian watershed.


图6沙河和北易水河流域地下水二氟二氯甲烷(CFC-12)与硝酸盐浓度关系(其中沙河流域地下水CFC-12数据引自Wang等[28], 北易水河流域地下水CFC-12数据引自Wang等[18])
Figure6.Relationship between CFC-12 and nitrate concentration in groundwater of River Sha and River Beiyishui watershed (Data of River Sha basin is from Wang et al. [28] and data of River Beiyishui watershed is from Wang et al. [18])


图7白洋淀流域典型地区(a)和平原区(b)地下水硝酸盐pH-pe关系图
图a中数据根据Wang et al., 2013[19]。pe=-lg[e]表示相对电子浓度。pe与ORP的关系被定义为[32]: ORP=(2.303R×T/F)×pe, 其中R为气体常数(8.314 J·mol-1·deg-1), T为开尔文温度(=oC+273.15), F是法拉第常量(96 485 C·mol-1)。
Figure7.Relationship between pH and pe of groundwater nitrate in typical areas (a) and plain areas (b) in the Lake Baiyangdian watershed
The relationship between ORP and pe is defined as[32]: ORP=(2.303R×T/F)×pe, where R is the gas constant (8.314 J·mol-1·deg-1); T is temperature in K (=oC+273.15) and F is the Faraday constant (96 485 C·mol-1).

参考文献
[1] | KEENEY D, OLSON R A. Sources of nitrate to ground water[J]. Critical Reviews in Environmental Control, 1986, 16(3):257-304 doi: 10.1080/10643388609381748 |
[2] | XIN J, LIU Y, CHEN F, et al. The missing nitrogen pieces:A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system[J]. Water Research, 2019, 165:114977 doi: 10.1016/j.watres.2019.114977 |
[3] | ZHOU J Y, GU B J, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6:25088 doi: 10.1038/srep25088 |
[4] | ASCOTT M J, GOODDY D C, WANG L, et al. Global patterns of nitrate storage in the vadose zone[J]. Nature Communications, 2017, 8:1416 doi: 10.1038/s41467-017-01321-w |
[5] | 崔惠敏.农业面源污染对白洋淀流域水环境的影响分析[J].现代农业科技, 2011, (7):298-300 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201107195.htm CUI H M. Analysis of effect of agricultural non-point source pollution on the water environment in Baiyangdian basin[J]. Modern Agricultural Science and Technology, 2011, (7):298-300 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201107195.htm |
[6] | 高彦春, 王晗, 龙笛.白洋淀流域水文条件变化和面临的生态环境问题[J].资源科学, 2009, 31(9):1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008 GAO Y C, WANG H, LONG D. Changes in hydrological conditions and the eco-environmental problems in Baiyangdian watershed[J]. Resources Science, 2009, 31(9):1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008 |
[7] | YANG J, STROKAL M, KROEZE C, et al. Nutrient losses to surface waters in Hai He basin:A case study of Guanting Reservoir and Baiyangdian Lake[J]. Agricultural Water Management, 2019, 213:62-75 doi: 10.1016/j.agwat.2018.09.022 |
[8] | 吕晨旭, 贾绍凤, 季志恒.近30年来白洋淀流域平原区地下水位动态变化及原因分析[J].南水北调与水利科技, 2010, 8(1):65-68 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201001024.htm LYU C X, JIA S F, JI Z H. Dynamics and causes of groundwater table change in plain area of Baiyangdian basin in last 30 years[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(1):65-68 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201001024.htm |
[9] | WANG S Q, TANG C Y, SONG X F, et al. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain[J]. Science of the Total Environment, 2014, 482/483:325-335 doi: 10.1016/j.scitotenv.2014.02.130 |
[10] | 袁瑞强, 龙西亭, 王鹏, 等.白洋淀流域地下水更新速率[J].地理科学进展, 2015, 34(3):381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201503013.htm YUAN R Q, LONG X T, WANG P, et al. Renewal rate of groundwater in the Baiyangdian lake basin[J]. Progress in Geography, 2015, 34(3):381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201503013.htm |
[11] | HUAN H, HU L T, YANG Y, et al. Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer[J]. Environment International, 2020, 137:105532 doi: 10.1016/j.envint.2020.105532 |
[12] | 龙幸幸, 杨路华, 夏辉, 等.白洋淀府河入淀口周边水质空间变异特征分析[J].水电能源科学, 2016, 34(9):35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201609009.htm LONG X X, YANG L H, XIA H, et al. Spatial variability characteristics analysis of water quality surrounding Fuhe river entrance in Baiyangdian lake[J]. Water Resources and Power, 2016, 34(9):35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201609009.htm |
[13] | LI C H, ZHENG X K, ZHAO F, et al. Effects of urban non-point source pollution from Baoding City on Baiyangdian Lake, China[J]. Water, 2017, 9(4):249 doi: 10.3390/w9040249 |
[14] | ZHU M J, WANG S Q, KONG X L, et al. Interaction of surface water and groundwater influenced by groundwater over-extraction, waste water discharge and water transfer in Xiong'an New Area, China[J]. Water, 2019, 11(3):539 doi: 10.3390/w11030539 |
[15] | 韩亚坤, 杨路华, 柴春岭, 等.保定府河下游两岸浅层地下水水质时间变异特征分析[J].中国农村水利水电, 2016, (9):197-200 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201609041.htm HAN Y K, YANG L H, CHAI C L, et al. Analysis of temporal variation of shallow groundwater characteristics in Fuhe River downstream fields[J]. China Rural Water and Hydropower, 2016, (9):197-200 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201609041.htm |
[16] | WANG R, LIU Z F, YAO Z J, et al. Modeling the risk of nitrate leaching and nitrate runoff loss from intensive farmland in the Baiyangdian Basin of the North China Plain[J]. Environmental Earth Sciences, 2014, 72(8):3143-3157 doi: 10.1007/s12665-014-3219-4 |
[17] | BRAUNS B, Bjerg P L, SONG X F, et al. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain[J]. Journal of Environmental Sciences, 2016, 45:60-75 doi: 10.1016/j.jes.2015.11.021 |
[18] | WANG S Q, TANG C Y, SONG X F, et al. Factors contributing to nitrate contamination in a groundwater recharge area of the North China Plain[J]. Hydrological Processes, 2016, 30(13):2271-2285 doi: 10.1002/hyp.10778 |
[19] | WANG S Q, TANG C Y, SONG X F, et al. Using major ions and δ15N-NO3- to identify nitrate sources and fate in an alluvial aquifer of the Baiyangdian lake watershed, North China Plain[J]. Environmental Science:Processes & Impacts, 2013, 15(7):1430-1443 http://smartsearch.nstl.gov.cn/paper_detail.html?id=ec58cbb988e5b6e6623efe8473e9c383 |
[20] | 袁瑞强.人类活动影响下的白洋淀流域浅层地下水循环机理研究[D].北京: 中国科学院地理科学与资源研究所, 2011 YUAN R Q. Study on the mechanism of shallow groundwater circulation in the Baiyangdian catchment with the influence of human activities[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 2011 |
[21] | QIU R Z, LI Y X, YANG Z F, et al. Influence of water quality change in Fu River on Wetland Baiyangdian[J]. Frontiers of Earth Science in China, 2009, 3(4):397 doi: 10.1007/s11707-009-0056-y |
[22] | 鲁明芳, 杨占波.唐河污水库对北侧地下水的影响[J].河北水利科技, 1995, 16(3):48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD199503016.htm LU M F, YANG Z B. Influence of Tanghe Sewage Reservoir on groundwater on the north side[J]. Hebei Water Conservancy Technology, 1995, 16(3):48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD199503016.htm |
[23] | 张兆吉, 费宇红, 陈宗宇, 等.华北平原地下水可持续利用调查评价[M].北京:地质出版社, 2009 ZHANG Z J, FEI Y H, CHEN Z Y, et al. Investigation and Evaluation on Sustainable Utilization of Groundwater in North China Plain[M]. Beijing:Geological Publishing House, 2009 |
[24] | 孔晓乐, 王仕琴, 丁飞, 等.基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J].环境科学, 2018, 39(6):2624-2631 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201806014.htm KONG X L, WANG S Q, DING F, et al. Source of nitrate in surface water and shallow groundwater around Baiyangdian Lake area based on hydrochemical and stable isotopes[J]. Environmental Science, 2018, 39(6):2624-2631 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201806014.htm |
[25] | 梁慧雅, 翟德勤, 孔晓乐, 等.府河-白洋淀硝酸盐来源判定及迁移转化规律[J].中国生态农业学报, 2017, 25(8):1236-1244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201708016.htm LIANG H Y, ZHAI D Q, KONG X L, et al. Sources, migration and transformation of nitrate in Fuhe River and Baiyangdian Lake, China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8):1236-1244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201708016.htm |
[26] | SILVA S R, KENDALL C, WILKISON D H, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. Journal of Hydrology, 2000, 228(1/2):22-36 http://www.sciencedirect.com/science/article/pii/S002216949900205X |
[27] | 毛绪美, 罗泽娇, 李永勇, 等.地下水硝酸盐氮同位素分析最新方法——细菌反硝化法[J].地球学报, 2005, 26(S):44-47 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509001015.htm MAO X M, LUO Z J, LI Y Y, et al. Bacterial denitrification:A new method for nitrogen isotopic analysis of nitrate in groundwater[J]. Acta Geoscientica Sinica, 2005, 26(S):44-47 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509001015.htm |
[28] | WANG S Q, YUAN R Q, TANG C Y, et al. Combination of CFCs and stable isotopes to characterize the mechanism of groundwater-surface water interactions in a headwater basin of the North China Plain[J]. Hydrological Processes, 2018, 32(11):1571-1587 doi: 10.1002/hyp.11494 |
[29] | XUE D M, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5):1159-1170 http://www.cabdirect.org/abstracts/20093123168.html |
[30] | PLUMMER L, BUSENBERG E, COOK P. Principles of Chlorofluorocarbon Dating. Use of Chlorofluorocarbons in Hydrology:A Guidebook[M]. Vienna:International Atomic Energy Agency, 2006:17-29 |
[31] | WANG S Q, ZHENG W B, CURRELL M, et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain[J]. Science of the Total Environment, 2017, 609:607-620 http://www.ncbi.nlm.nih.gov/pubmed/28763658 |
[32] | APPELO C A J, POSTMA D. Geochemistry, Groundwater and Pollution, A. A.[M]. Amsterdam:Taylor & Francis, 2005 |