删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

模拟氮沉降对一年生香椿幼苗生长和光合特性的影响

本站小编 Free考研考试/2022-01-01

裴昊斐,
高卫东,
方娇阳,
叶可可,
祝燕,
黄放,
李庆梅,
中国林业科学研究院林业研究所/国家林业和草原局林木培育重点实验室/林木遗传育种国家重点实验室 北京 100091
基金项目: 国家林业局北方林木种子质量检验检测中心运行补助2018-LYPT-ZJ-160002
中国林业科学研究院林业研究所林木培育重点实验室专项资金ZDRIF201701
以及中央级公益性科研院所基本科研业务费专项基金CAFYBB2017SY008

详细信息
作者简介:裴昊斐, 主要从事林木种苗研究。E-mail:1393420815@qq.com
通讯作者:李庆梅, 主要从事林木种苗研究工作。E-mail:liqm99@163.com
中图分类号:S792.33

计量

文章访问数:611
HTML全文浏览量:0
PDF下载量:354
被引次数:0
出版历程

收稿日期:2019-03-06
录用日期:2019-07-23
刊出日期:2019-10-01

Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings

PEI Haofei,
GAO Weidong,
FANG Jiaoyang,
YE Keke,
ZHU Yan,
HUANG Fang,
LI Qingmei,
Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration/State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China
Funds: The study was supported by the Subsidies for the Operation of the North Forest Seed Quality Inspection and Testing Center of the State For-estry Administration of China2018-LYPT-ZJ-160002
the Special Funds for Key Laboratory of Forest Cultivation, Forestry Research In-stitute, Chinese Academy of Forestry SciencesZDRIF201701
the Central Public-interest Scientific Institution Basal Research Fund of ChinaCAFYBB2017SY008

More Information
Corresponding author:LI Qingmei, E-mail: liqm99@163.com


摘要
HTML全文
(2)(2)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为研究氮沉降对一年生香椿(Toona sinensis)幼苗夏季生长以及光合特性的影响,通过在夏季模拟氮沉降控制试验,以尿素为氮源供体,设置0 kg(N)·hm-2·a-1(CK)、20 kg(N)·hm-2·a-1、40 kg(N)·hm-2·a-1、80 kg(N)·hm-2·a-1、120 kg(N)·hm-2·a-1、180 kg(N)·hm-2·a-1不同氮添加水平以模拟氮沉降,对香椿幼苗地径、苗高、生物量及其分配和光合作用等进行研究。结果表明:1)不同氮添加量均促进了香椿幼苗地径、苗高和生物量的增加,地径、苗高和生物量均以氮添加水平180 kg(N)·hm-2·a-1下最高,分别较CK高42.5%、64.4%和304.9%,且生物量向根、叶分配较多;2)香椿幼苗叶片相对叶绿素含量(SPAD)随氮添加水平的增加而增加,在180 kg(N)·hm-2·a-1下最高,较CK增加73.9%;3)香椿幼苗表观量子效率(AQY)、最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)以及暗呼吸速率(Rd)随氮添加水平的增加均呈现先升高后降低的趋势,其中LCP以80 kg(N)·hm-2·a-1下最高,AQY、Pnmax、LSP和Rd均以120 kg(N)·hm-2·a-1下最高。结果表明,适量氮沉降能够促进香椿幼苗生长和光合能力的提高,但更高水平的氮沉降可能对香椿幼苗产生一定抑制作用。
关键词:氮沉降/
香椿幼苗/
生长量/
相对叶绿素/
光合能力
Abstract:With global industrial and agricultural modernization, the characteristics and processes of various ecosystems have been profoundly affected due to increasing nitrogen deposition. Toona sinensis is a unique, dual-use plant widely distributed in China. It is used for medicinal purposes and is also a fast-growing timber tree species. To determine the threshold value of nitrogen deposition that could be sustained at the seedling stage of T. sinensis and to provide some theoretical basis for the cultivation of T. sinensis, a preliminary study was performed to test the response of annual T. sinensis seedlings to nitrogen deposition in summer. Annual T. sinensis seedlings were grown under the simulated nitrogen deposition experiment in summer. Urea was used as the nitrogen source, with six levels of nitrogen addition:0 kg(N)·hm-2·a-1, 20 kg(N)·hm-2·a-1, 40 kg(N)·hm-2·a-1, 80 kg(N)·hm-2·a-1, 120 kg(N)·hm-2·a-1, and 180 kg(N)·hm-2·a-1. The ground diameter, seedling height, biomass, and photosynthesis of T. sinensis seedlings were then measured. The results showed that nitrogen addition contributed to an improvement in the diameter, height, and biomass of T. sinensis seedlings. Ground diameter, height, and biomass were the highest after the addition of 180 kg(N)×hm-2·a-1 nitrogen and were 42.5%, 64.4%, and 304.9% higher, respectively, than the control values. The biomass of T. sinensis seedlings was distributed more to the root and leaf. The SPAD of seedling leaves increased with increasing levels of nitrogen addition. At the highest nitrogen addition of 180 kg(N)·hm-2·a-1, SPAD values were 73.9% higher than the control. The apparent quantum yield (AQY), maximum net photosynthetic rate (Pnmax), light saturation point (LSP), light compensation point (LCP), and the dark respiration rate (Rd) increased at first and then decreased with increasing levels of nitrogen addition. Except for LCP, which was highest at 80 kg(N)·hm-2·a-1, AQY, Pnmax, LSP, and Rd were the highest at 120 kg(N)·hm-2·a-1. This study showed that a certain level of nitrogen addition could promote the growth and enhance the photosynthetic ability of T. sinensis seedlings. However, there is a limit to the nitrogen deposition level tolerance of T. sinensis seedlings and when the nitrogen level increases to a certain point, photosynthetic ability begins to decline.
Key words:Nitrogen deposition/
Toona sinensis seedlings/
Growth increment/
SPAD/
Photosynthetic capacity

HTML全文


图1不同水平模拟氮沉降对香椿幼苗地径和苗高的影响
不同小写字母表示氮添加水平间在0.05水平差异显著。
Figure1.Effects of simulated nitrogen deposition at different levels on ground diameter and height of Toona sinensis seedlings
Different lowercase letters indicate significant differences among nitrogen addition levels at 0.05 level.


下载: 全尺寸图片幻灯片


图2不同水平模拟氮沉降对香椿幼苗相对叶绿素含量(SPAD)的影响
不同小写字母表示氮添加水平水平间在0.05水平差异显著。
Figure2.Effect of simulated nitrogen deposition at different levels on leaf SPAD of Toona sinensis seedlings
Different lowercase letters indicate significant differences among nitrogen addition levels a at 0.05 level.


下载: 全尺寸图片幻灯片

表1不同水平模拟氮沉降对香椿幼苗生物量积累及其分配的影响
Table1.Effects of simulated nitrogen deposition at different levels on biomass accumulation and allocation of Toona sinensisseedlings
氮添加量
Nitrogen addition
[kg(N)hm-2?a-1]
根生物量
Root biomass
(g?plant-1)
根重比
Root weight ratio
茎生物量
Stem biomass
(g?plant-1)
茎重比
Stem weight ratio
叶生物量
Leaf biomass
(g?plant-1)
叶重比
Leaf weight ratio
总生物量
Total biomass
(g?plant-1)
CK 0.81±0.09e 0.42±0.02b 0.69±0.03c 0.35±0.02a 0.45±0.06c 0.23±0.04d 2.06±0.15d
20 1.29±0.17d 0.50±0.02a 0.63±0.02d 0.24±0.02c 0.64±0.07c 0.25±0.01cd 2.60±0.21d
40 1.48±0.31d 0.51±0.07a 0.80±0.04c 0.28±0.02b 0.70±0.05c 0.24±0.05d 2.89±0.29d
80 1.87±0.39c 0.49±0.05a 0.81±0.09c 0.19±0.02d 1.65±0.06bc 0.38±0.02a 4.31±0.42c
120 3.39±0.69b 0.51±0.05a 1.25±0.05b 0.18±0.02d 2.06±0.07a 0.30±0.03bc 6.80±0.67b
180 3.12±0.73a 0.37±0.05c 1.54±0.12a 0.18±0.02d 2.64±0.05ab 0.32±0.03b 8.34±0.78a
不同小写字母表示氮添加水平间在0.05水平差异显著。Different lowercase letters indicate significant differences among nitrogen addition levels a at 0.05 level.


下载: 导出CSV
表2不同水平模拟氮沉降对香椿幼苗光合指标的影响
Table2.Effects of simulated nitrogen deposition at different levels on photosynthetic parameters of Toona sinensis seedlings
氮添加量
Nitrogen addition
[kg(N)?hm-2?a-1]
表观量子效率(AQY)
Apparent quantum yield
(μmol?μmol-1)
最大净光合效率(Pnmax)
Max photosynthetic rate
(μmol?m-2?s-1)
光饱和点(LSP)
Light saturation point
(μmol?m-2?s-1)
光补偿点(LCP)
Light compensation point
(μmol?m-2?s-1)
暗呼吸速率(Rd)
Dark respiration rate
(μmol?m-2?s-1)
CK 0.036±0.01e 1.22±0.2f 88.02±14.0d 16.00±1.1b 0.48±0.0c
20 0.052±0.02d 2.14±0.2e 118.71±12.1c 16.01±1.3b 0.73±0.2bc
40 0.086±0.03c 3.36±0.3c 154.98±15.9ab 17.33±1.9ab 1.30±0.4b
80 0.104±0.06b 3.64±0.6b 182.62±13.3a 19.00±0.9a 2.18±0.3a
120 0.119±0.04a 3.90±0.5a 193.98±13.0a 13.33±1.2c 2.22±0.7a
180 0.103±0.02b 3.23±0.1d 188.58±16.4a 12.00±1.7c 2.15±0.1a
不同小写字母表示氮添加水平间在0.05水平差异显著。Different lowercase letters indicate significant differences among nitrogen addition levels a at 0.05 level.


下载: 导出CSV

参考文献(29)
[1]DIGNON J, HAMEED S. Global emissions of nitrogen and sulfur oxides from 1860 to 1980[J]. JAPCA, 1989, 39:180-186 doi: 10.1080/08940630.1989.10466519
[2]肖辉林.大气氮沉降对森林土壤酸化的影响[J].林业科学, 2001, 37(4):111-116 doi: 10.3321/j.issn:1001-7488.2001.04.018
XIAO H L. Effects of atmospheric nitrogen deposition on forest soil acidification[J]. Scientia Silvae Sinicae, 2001, 37(4):111-116 doi: 10.3321/j.issn:1001-7488.2001.04.018
[3]BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity:A synthesis[J]. Ecological Applications, 2010, 20(1):30-59 doi: 10.1890/08-1140.1
[4]顾峰雪, 黄玫, 张远东, 等. 1961-2010年中国区域氮沉降时空格局模拟研究[J].生态学报, 2016, 36(12):3591-3600 http://d.old.wanfangdata.com.cn/Periodical/stxb201612013
GU F X, HUANG M, ZHANG Y D, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010[J]. Acta Ecologica Sinica, 2016, 36(12):3591-3600 http://d.old.wanfangdata.com.cn/Periodical/stxb201612013
[5]LIU X J, ZHANG Y, HAN W X. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462 doi: 10.1038/nature11917
[6]NAKAJI T, FUKAMI M, DOKIYA Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees, 2001, 15(8):453-461 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70b1264427614269adf3e71da1343734
[7]李德军, 莫江明, 方运霆, 等.木本植物对高氮沉降的生理生态响应[J].热带亚热带植物学报, 2004, 12(5):482-488 doi: 10.3969/j.issn.1005-3395.2004.05.021
LI D J, MO J M, FANG Y T, et al. Ecophysiological responses of woody plants to elevated nitrogen deposition[J]. Journal of Tropical and Subtropical Botany, 2004, 12(5):482-488 doi: 10.3969/j.issn.1005-3395.2004.05.021
[8]陈书坤, 李恒, 陈邦余.中国植物志[M].北京:科学出版社, 1997
CHEN S K, LI H, CHEN B Y. Flora of China[M]. Beijing:Science Press, 1997
[9]何安.日本楤木和香椿对铅、镉胁迫的响应研究[D].天津: 天津理工大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10060-1017814774.htm
HE A. Research on the response of Aralia elata var. inermis and Toona sinensis to Pb or Cd[D]. Tianjin: Tianjin University of Technology, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10060-1017814774.htm
[10]于光明, 江建新.香椿栽培[M].合肥:安徽科学技术出版社, 1998:1-23
YU G M, JIANG J X. Cultivation of Toona sinensis[M]. Hefei:Anhui Science & Technology Publishing House, 1998:1-23
[11]国家质量技术监督局. GB 2772-1999林木种子检验规程[S].北京: 中国标准出版社, 2000
The State Bureau of Quality and Technical Supervision. GB 2772-1999 Rules for Forest Tree Seed Testing[S]. Beijing: Standards Press of China, 2000
[12]MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3(3):238-253 doi: 10.1007/s100210000023
[13]FARQUHAR G D, VON CAEMMERER S, BERRY J A. Models of photosynthesis[J]. Plant Physiology, 2001, 125(1):42-45 doi: 10.1104/pp.125.1.42
[14]HERRICK J D, THOMAS R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem[J]. Tree Physiology, 1999, 19(12):779-786 doi: 10.1093/treephys/19.12.779
[15]王忠.植物生理学[M].北京:中国农业出版社, 2008:9
WANG Z. Plant Physiology[M]. Beijing:China Agriculture Press, 2008:9
[16]胡星云, 孙志高, 孙文广, 等.黄河口新生湿地碱蓬生物量及氮累积与分配对外源氮输入的响应[J].生态学报, 2017, 37(1):226-237 http://d.old.wanfangdata.com.cn/Periodical/stxb201701024
HU X Y, SUN Z G, SUN W G, et al. Biomass and nitrogen accumulation and allocation in Suaeda salsa in response to exogenous nitrogen enrichment in the newly created marshes of the Yellow River Estuary, China[J]. Acta Ecologica Sinica, 2017, 37(1):226-237 http://d.old.wanfangdata.com.cn/Periodical/stxb201701024
[17]张维, 赵文勤, 谢双全, 等.模拟降水和氮沉降对准噶尔盆地南缘梭梭光合生理的影响[J].中国生态农业学报, 2018, 26(1):106-115 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201801012
ZHANG W, ZHAO W Q, XIE S Q, et al. Combined effect of simulated precipitation and nitrogen deposition on photo-synthetic physiology of Haloxylon ammodendron in southern margin of Junggar Basin, China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1):106-115 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201801012
[18]王建宇, 王庆贵, 闫国永, 等.原始云冷杉、红松林树木生长对氮沉降的响应[J].北京林业大学学报, 2017, 39(4):21-28 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201704003
WANG J Y, WANG Q G, YAN G Y, et al. Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4):21-28 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201704003
[19]史顺增, 熊德成, 冯建新, 等.模拟氮沉降对杉木幼苗细根的生理生态影响[J].生态学报, 2017, 37(1):74-83 http://d.old.wanfangdata.com.cn/Periodical/stxb201701008
SHI S Z, XIONG D C, FENG J X, et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings[J]. Acta Ecologica Sinica, 2017, 37(1):74-83 http://d.old.wanfangdata.com.cn/Periodical/stxb201701008
[20]李明月, 王健, 王振兴, 等.模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局[J].生态学报, 2013, 33(5):1569-1572 http://d.old.wanfangdata.com.cn/Periodical/stxb201305024
LI M Y, WANG J, WANG Z X, et al. Photosynthetic characteristics, biomass allocation, C, N and P distribution of Schima superba seedlings in response to simulated nitrogen deposition[J]. Acta Ecologica Sinica, 2013, 33(5):1569-1572 http://d.old.wanfangdata.com.cn/Periodical/stxb201305024
[21]唐红燕, 许丽萍, 李帅锋, 等.模拟氮沉降对南亚热带旱冬瓜幼苗生长性状及枝叶构建影响[J].西北林学院学报, 2018, 33(1):162-166 http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201801026
TANG H Y, XU L P, LI S F, et al. Effects of simulated nitrogen deposition on the growth, twig and leaf traits of Alnus nepalensis seedlings in the southern subtorpical region[J]. Journal of Northwest Forestry University, 2018, 33(1):162-166 http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201801026
[22]李红梅.模拟氮沉降对墨西哥柏幼苗的影响[D].南京: 南京林业大学, 2013: 5-7 http://cdmd.cnki.com.cn/Article/CDMD-10298-1013046261.htm
LI H M. Effect of simulated nitrogen deposition on Cupressus lusitanica seedlings[D]. Nanjing: Nanjing Forestry University, 2013: 5-7 http://cdmd.cnki.com.cn/Article/CDMD-10298-1013046261.htm
[23]蒋思思, 魏丽萍, 杨松, 等.不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J].生态学报, 2015, 35(21):7061-7070 http://d.old.wanfangdata.com.cn/Periodical/stxb201521016
JIANG S S, WEI L P, YANG S, et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabulaeformis Carr. seedlings[J]. Acta Ecologica Sinica, 2015, 35(21):7061-7070 http://d.old.wanfangdata.com.cn/Periodical/stxb201521016
[24]彭礼琼, 金则新, 王强, 等.模拟氮沉降对夏蜡梅幼苗生理生态特性的影响[J].生态学杂志, 2014, 33(4):989-995 http://d.old.wanfangdata.com.cn/Periodical/stxzz201404020
PENG L Q, JIN Z X, WANG Q, et al. Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings[J]. Chinese Journal of Ecology, 2014, 33(4):989-995 http://d.old.wanfangdata.com.cn/Periodical/stxzz201404020
[25]赵平, 孙谷畴, 彭少麟.植物氮素营养的生理生态学研究[J].生态科学, 1998, 17(2):37-42 http://www.cnki.com.cn/Article/CJFDTotal-STKX802.006.htm
ZHAO P, SUN G C, PENG S L. Ecophysiological research on nitrogen nutrition of plant[J]. Ecologic Science, 1998, 17(2):37-42 http://www.cnki.com.cn/Article/CJFDTotal-STKX802.006.htm
[26]周志强, 彭英丽, 孙铭隆, 等.不同氮素水平对濒危植物黄檗幼苗光合荧光特性的影响[J].北京林业大学学报, 2015, 37(12):17-23 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201512003
ZHOU Z Q, PENG Y L, SUN M L, et al. Effects of nitrogen levels on photosynthetic and fluorescence characteristics in seedlings of endangered plant Phellodendron amurense[J]. Journal of Beijing Forestry University, 2015, 37(12):17-23 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201512003
[27]李彩斌, 郭华春.耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析[J].中国生态农业学报, 2017, 25(8):1181-1189 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201708010
LI C B, GUO H C. Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8):1181-1189 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201708010
[28]张付春, 潘明启, 麦麦提阿卜拉·麦麦提图尔荪, 等.浮尘天气对墨玉河流域葡萄叶片光合及水势的影响[J].中国生态农业学报, 2018, 26(7):990-998 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201807006
ZHANG F C, PAN M Q, MEMETABLA·M, et al. Effect of floating dust weather on leaf photosynthesis and water potential of grapes in Karakash River Basin[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):990-998 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201807006
[29]鲁显楷, 莫江明, 李德军, 等.鼎湖山主要林下层植物光合生理特性对模拟氮沉降的响应[J].北京林大学学报, 2007, 29(6):1-9 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200706001
LU X K, MO J M, LI D J, et al. Effects of simulated N deposition on the photosynthetic and physiologic characteristics of dominant understorey plants in Dinghushan Mountain of subtropical China[J]. Journal of Beijing Forestry University, 2007, 29(6):1-9 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200706001

相关话题/生态 植物 生理 北京 林业