李升东,
李华伟,
王宗帅,
张宾,
王法宏,,
孔令安,
山东省农业科学院作物研究所 济南 250100
基金项目: 山东省农业科学院青年基金项目2014QNM04
公益性行业(农业)科研专项201503130
山东省重点研发计划项目2017GNC11106
山东省泰山产业领军人才高效生态农业创新类项目LJNY201601
详细信息
作者简介:冯波, 主要研究方向为小麦丰产稳产节本高效栽培技术及其生理基础。E-mail:fengbo109@126.com
通讯作者:王法宏, 主要研究方向为小麦高产高效栽培技术及生理生态, E-mail:13001719601@163.com
孔令安, 主要研究方向为小麦抗逆生理, E-mail:kongling-an@163.com
中图分类号:S512.1;S311计量
文章访问数:741
HTML全文浏览量:12
PDF下载量:451
被引次数:0
出版历程
收稿日期:2018-06-22
录用日期:2018-09-30
刊出日期:2019-03-01
Effect of high temperature stress at early grain-filling stage on plant morphology and grain yield of different heat-resistant varieties of wheat
FENG Bo,LI Shengdong,
LI Huawei,
WANG Zongshuai,
ZHANG Bin,
WANG Fahong,,
KONG Ling'an,
Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Funds: the Fund for Youth Scholars of Shandong Academy of Agricultural Sciences2014QNM04
the Special Fund for Agro-scientific Research in the Public Interest of China201503130
the Key Science and Technology Projects of Shandong Province2017GNC11106
the Mountain Tai Industry Leaders Innovation Projects for High Efficient and Ecological Agriculture of Shandong ProvinceLJNY201601
More Information
Corresponding author:WANG Fahong, E-mail: 13001719601@163.com;KONG Ling'an, E-mail: kongling-an@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:研究灌浆初期高温胁迫对不同耐热性小麦品种的影响,有助于为耐热稳产性小麦品种选育提供方法,也可为小麦丰产抗逆栽培技术提供理论参考。以‘济麦22’(JM22)、056852品系(056852)、‘新麦26’(XM26)和‘藁城8901’(GC8901)4个不同耐热性小麦品种(系)为材料,通过灌浆初期(花后12~14 d)在田间搭建塑料棚模拟高温胁迫,研究高温胁迫对小麦形态和籽粒产量的影响。高温胁迫处理3 d,处理最高温度达43.13℃,处理日均温较不搭棚的田间对照温度在胁迫3 d中分别高10.48℃、9.71℃、9.84℃。结果表明:灌浆初期高温胁迫降低了小麦的植被覆盖指数和冠层叶绿素含量,JM22和056852高温胁迫处理与对照的NDVI值和冠层叶绿素含量在胁迫后差异不显著,而XM26和GC8901分别显著下降9.66%、6.26%和12.10%、10.73%。高温胁迫后不同耐热性小麦品种(系)籽粒灌浆持续期显著缩短,与对照相比,JM22、XM26、056852和GC8901籽粒灌浆持续期分别显著缩短1.4 d、2.4 d、0.8 d和3.0 d。千粒重和籽粒产量因高温胁迫显著降低,XM26和GC8901分别比对照产量降低11.43%和10.05%,JM22和056852产量分别降低6.41%和6.93%。综上,灌浆初期高温胁迫不同程度地加速了耐热性不同小麦品种(系)冠层叶绿素的降解,缩短了籽粒灌浆天数,减少了灌浆物质的积累,降低了籽粒产量。试验材料JM22耐热性和丰产性都较好;056852品系耐热性较好,产量一般;XM26和GC8901耐热性较差,产量较低。
关键词:高温胁迫/
小麦/
耐热性/
植株形态/
产量
Abstract:As one of the major crops in China, wheat has direct relationship with living standard and national food security. Wheat suffers high temperature stress often at late growth period which negatively impacted wheat yield and quality. Under the steadily increasing global temperature, the frequency of high temperature stress in wheat has increased. There are many indicators used for heat resistance screening and evaluation of wheat, including chlorophyll fluorescence, cell membrane, canopy temperature, thermal index, etc, in previous researches. However, most researches were limited to laboratory analysis, and neglected yield investigation. Considering wheat as a group crop, the chlorophyll content of population canopy and NDVI were used for wheat heat-resistance evaluation in this study. The grain-filling characteristics and yield outputs were also investigated. The study aimed at providing reliable methods of breeding, and theoretical basis for cultivation of high-yielding and stress-resistant wheat varieties. In this study, the effect of high temperature stress for 3 days at early grain-filling stage on morphology and grain yield of different heat-resistant wheat varieties (lines), including heat-resistant varieties (lines) of JM22 and 056852, and heat-sensitive varieties (lines) of XM26 and GC8901, were investigated through erecting artificial greenhouse to increase on-field temperature. The highest temperature during the 3-day high temperature stress was 43.13℃ and the average temperatures in every day were respectively 10.48℃, 9.71℃ and 9.84℃ higher than that of the control. Different heat-resistance varieties (lines) varied in response of plant and grain morphologies to high temperature stress. NDVI and canopy chlorophyll content of four varieties (lines) decreased after high temperature stress. These changes of JM22 and 056852 were not significant, while NDVI values and chlorophyll contents of XM26, GC8901 significantly decreased by 9.66%, 12.10%, and 6.26%, 10.73%, respectively. High temperature stress accelerated the senescence process of wheat. The grain-filling duration were significantly shortened by 1.4 d, 0.8 d, 2.4 d and 3.0 d for JM22, 056852, XM26 and GC8901, respectively. High temperature stress significantly decreased 1000-kernel weight and grain yield of wheat. The yield reductions of heat-sensitive varieties (lines) of XM26 and GC8901 were 11.43% and 10.05%, those of heat-resistant varieties (lines) of JM22 and 056852 were 6.41% and 6.93%, respectively. In conclusion, high temperature stress at early grain-filling stage accelerated canopy chlorophyll degradation, shortened grain-filling duration, reduced grain yield of wheat. JM22 showed better heat resistant ability and yield performance. 056852 had better heat resistance ability but normal yield performance. XM26 and GC8901 were worse both in heat resistance and in grain yield.
Key words:High temperature stress/
Wheat/
Heat resistance/
Plant morphology/
Yield
HTML全文

图12012年、2013年、2018年试验期间高温胁迫处理与对照处理的气温日变化
试验在2012年处理的第3天12:00时大棚内温度均超过45 ℃, 因此12:00—14:00揭开高温棚, 以解除超高温胁迫。因此, 2012年第3天高温胁迫处理12:00和14:00数据是揭开大棚后的温度数据。
Figure1.Daily temperature dynamics under high temperature stress and control treatments during the experiment period in 2012, 2013 and 2018
The proof of the artificial greenhouse was uncovered from 12:00 to 14:00 at the 3rd day in 2012 because of the extreme high temperature over 45 ℃ inside, so as to alleviate the damage by the super high temperature stress. Therefore, the data at time 12:00 and time 14:00 of the 3rd day in 2012 were the temperature after the greenhouse proof was removed.


图2灌浆初期高温胁迫对不同耐热品种(系)冬小麦植株形态的影响
Figure2.Effect of high temperature stress at early filling stage on plant morphological characters of different heat-resistant varieties (lines) of wheat


图3灌浆初期高温胁迫后不同耐热性小麦品种(系)冠层不同器官叶绿素含量较对照下降百分比
正体不同小写字母表示同一品种不同器官间差异达5%显著水平。斜体不同大、小写字母分别表示不同品种间差异达1%或5%显著水平。
Figure3.Decrease percentages of canopy chlorophyll contents of different organs of different heat-resistant varieties (lines) of wheat compared to the control after high temperature stress
Different normal lowercase letters mean significant differences among different organs for the same cultivar at 0.05 level. Different italic uppercase or lowercase letters mean significant differences among different varieties at 0.01 or 0.05 level.


图4灌浆初期高温胁迫对不同耐热小麦品种(系)不同时间植被覆盖指数(NDVI)的影响
05-18、05-21、05-29和06-02分别为高温胁迫后4 d、7 d、15 d和19 d。正体不同大、小写字母表示同一品种不同处理间差异达1%极显著或5%显著水平。斜体不同大小写字母分别表示不同品种间差异达1%或5%显著水平。
Figure4.Effect of high temperature stress at early filling stage on NDVI values of different heat-resistant varieties (lines) of wheat at different time after filling
05-18, 05-21, 05-29 and 06-02 are 4, 7, 15 and 19 days after high temperature stress. Different normal upper and lowercase letters above each bar mean significant differences between treatments for the same cultivar at 0.01 level and 0.05 level. Different italic uppercase and lowercase letters mean differences among different varieties at 0.01 or 0.05 level.


图5灌浆初期高温胁迫对不同耐热小麦品种(系)籽粒形态的影响
Figure5.Effect of high temperature stress at early filling stage (Str) on grain morphology of different heat-resistant varieties (lines) of wheat


图6灌浆初期高温胁迫(Str)对不同耐热性小麦品种(系)粒重增长动态的影响
箭头之间为高温胁迫处理时间:花后12-14 d。
Figure6.Effect of high temperature stress at early filling stage (Str) on dynamic change of 1000-grain weight of different heat-resistant varieties of wheat
Space between two narrows is the high temperature stress treatment time, from 12 to 14 days after anthesis.

表1灌浆初期高温胁迫对不同耐热小麦品种(系)籽粒硬度及直径的影响
Table1.Effect of high temperature stress at early filling stage on grain hardness and diameter of different heat-resistant varieties (lines) of wheat
品种(系) Variety (line) | 处理 Treatment | 硬度 Hardness | 相对于对照的变化 Change compared to CK (%) | 直径Diameter (mm) | 相对于对照的变化 Change compared to CK (%) |
JM 22 | 对照CK | 74.5Bb | 6.04c | 2.995Cc | -6.34a |
高温胁迫High temperature stress | 79.0BbCc | 2.805Ccd | |||
XM 26 | 对照CK | 82.0Aa | 8.54b | 2.962DCc | -5.81b |
高温胁迫High temperature stress | 89.0AaBb | 2.790Cc | |||
056852 | 对照CK | 55.0Cd | 15.09a | 3.250Aab | -5.23c |
高温胁迫High temperature stress | 63.3CDd | 3.080Aa | |||
GC 8901 | 对照CK | 67.0Bc | 6.72c | 3.150BCb | -5.24c |
高温胁迫High temperature stress | 71.5BcC | 2.985Bb | |||
不同大小写字母分别表示高温胁迫与对照间差异在P < 0.01水平和P < 0.05水平显著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at P < 0.05 and P < 0.01 levels, respectively. |

表2灌浆初期高温胁迫对不同品种(系)小麦籽粒增重模型及灌浆参数的影响
Table2.Effect of high temperature stress at early filling stage on grain filling process model and characteristic parameters of wheat grain filling of different heat-resistant varieties (lines) of wheat
品种 Cultivar (line) | 处理 Treatment | 灌浆持续期 Duration of grain filling (d) | 最大灌浆速率出现时间 Time to max filling rate (d) | 最大灌浆速率 Max filling rate (mg·grain-1·d-1) |
JM22 | 对照CK | 27.2ABba | 19.5ABb | 1.9Aa |
高温胁迫High temperature stress | 25.8ABb | 17.8Bb | 1.7Aa | |
XM26 | 对照CK | 25.6Bbca | 17.9ACc | 1.7Aa |
高温胁迫High temperature stress | 23.2Bbc | 16.2BCc | 1.1Aa | |
056852 | 对照CK | 29.5Aa | 21.1Aa | 1.8Aa |
高温胁迫High temperature stress | 28.7Aab | 19.0ABa | 1.7Aa | |
GC8901 | 对照CK | 25.1aBc | 18.0ACc | 1.7Aa |
高温胁迫High temperature stress | 22.1Bcb | 16.2BCc | 1.3Aa | |
不同大、小写字母分别表示高温胁迫与对照间差异在P < 0.01水平和P < 0.05水平显著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at P < 0.01 and P < 0.05 levels, respectively. |

表3灌浆初期高温胁迫对不同耐热品种(系)千粒重和产量的影响
Table3.Effect of high temperature stress at early filling stage on thousand-kernel weight and grain yield in different heat-resistant wheat varieties (lines)
品种(系) Variety (line) | 处理 Treatment | 千粒重 1000-kernel weight (g) | 相对于对照的变化 Change compared to CK (%) | 籽粒产量 Grain yield (kg·hm-2) | 相对于对照的变化 Change compared to CK (%) |
JM 22 | 对照CK | 45.48±0.63ABab | -4.39Cc | 4 835±37.7Aa | -6.41Bd |
高温胁迫High temperature stress | 43.48±0.26ABabc | 4 525±40.4AaB | |||
XM 26 | 对照CK | 39.34±0.59ABCbc | -5.90Bb | 4 330±28.5ABCc | -11.43Aa |
高温胁迫High temperature stress | 37.02±0.38ABbc | 3 835±33.2BCc | |||
056852 | 对照CK | 50.27±0.67Aa | -5.93Bb | 4 513±47.3ABb | -6.93Bc |
高温胁迫High temperature stress | 47.29±0.18Aab | 4 200±38.5Bb | |||
GC 8901 | 对照CK | 35.63±0.44BCc | -7.64Aa | 4 045±19.1ABCd | -10.05Ab |
高温胁迫High temperature stress | 32.91±0.40Bc | 3 638±30.7BCd | |||
不同大小写字母分别表示高温胁迫与对照间差异在P < 0.01水平和P < 0.05水平显著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at P < 0.05 and P < 0.01 levels, respectively. |

参考文献
[1] | KO M, BARUTCULAR C, TIRYAKIOGLU M. Possible heat-tolerant wheat cultivar improvement through the use of flag leaf gas exchange traits in a Mediterranean environment[J]. Journal of the Science of Food and Agriculture, 2008, 88(9):1638-1647 doi: 10.1002/(ISSN)1097-0010 |
[2] | DEL MORAL L F G, RHARRABTI Y, VILLEGAS D, et al. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions[J]. Agronomy Journal, 2003, 95(2):266-274 doi: 10.2134/agronj2003.0266 |
[3] | 李永庚, 于振文, 张秀杰, 等.小麦产量与品质对灌浆不同阶段高温胁迫的响应[J].植物生态学报, 2005, 29(3):461-466 doi: 10.3321/j.issn:1005-264X.2005.03.017 LI Y G, YU Z W, ZHANG X J, et al. Response of yield and quality of wheat to heat stress at different grain filling stages[J]. Acta Phytoecologica Sinica, 2005, 29(3):461-466 doi: 10.3321/j.issn:1005-264X.2005.03.017 |
[4] | 苗建利, 王晨阳, 郭天财, 等.高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响[J].麦类作物学报, 2008, 28(2):254-259 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200802016 MIAO J L, WANG C Y, GUO T C, et al. Effects of post-anthesis interactions of high temperature and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength[J]. Journal of Triticeae Crops, 2008, 28(2):254-259 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200802016 |
[5] | WARDLAW I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment[J]. Annals of Botany, 2002, 90(4):469-476 doi: 10.1093/aob/mcf219 |
[6] | 胡阳阳, 卢红芳, 刘卫星, 等.灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J].作物学报, 2018, 44(4):591-600 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804013 HU Y Y, LU H F, LIU W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4):591-600 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804013 |
[7] | 肖登攀, 陶福禄, 沈彦俊, 等.华北平原冬小麦对过去30年气候变化响应的敏感性研究[J].中国生态农业学报, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1 XIAO D P, TAO F L, SHEN Y J, et al. Sensitivity of response of winter wheat to climate change in the North China Plain in the last three decades[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1 |
[8] | 成林, 张志红, 方文松.干热风对冬小麦灌浆速率和千粒重的影响[J].麦类作物学报, 2014, 34(2):248-254 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201402017 CHENG L, ZHANG Z H, FANG W S. Effects of dry-hot wind on grain filling speed and 1000-kernel weight of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(2):248-254 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201402017 |
[9] | AL-KHATIB K, PAULSEN G M. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions[J]. Crop Science, 1990, 30(5):1127-1132 doi: 10.2135/cropsci1990.0011183X003000050034x |
[10] | IPCC. Summary for policymakers[C]//Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: IPCC, 2007 |
[11] | 谭凯炎, 房世波, 任三学.增温对华北冬小麦生产影响的试验研究[J].气象学报, 2012, 70(4):902-908 http://d.old.wanfangdata.com.cn/Periodical/qxxb201204027 TAN K Y, FANG S B, REN S X. Experiment study of winter wheat growth and yield response to climate warming[J]. Acta Meteorologica Sinica, 2012, 70(4):902-908 http://d.old.wanfangdata.com.cn/Periodical/qxxb201204027 |
[12] | BAKER N R, ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies:An examination of future possibilities[J]. Journal of Experimental Botany, 2004, 55(403):1607-1621 doi: 10.1093/jxb/erh196 |
[13] | ELHANI S, RHARRABTI Y, DEL MORAL L F G, et al. Evolution of chlorophyll fluorescence parameters in durum wheat as affected by air temperature[M]//ROYO C, NACHIT M, DI FONZO N, et al. Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: CIHEAM-Options Méditerranéennes, 2004: 275-277 |
[14] | CUI L J, LI J L, FAN Y M, et al. High temperature effects on photosynthesis, PSⅡ functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility[J]. Botanical Studies, 2006, 47(1):61-69 |
[15] | THIAW S, HALL A E. Comparison of selection for either leaf-electrolyte-leakage or pod set in enhancing heat tolerance and grain yield of cowpea[J]. Field Crops Research, 2004, 86(2/3):239-253 http://www.sciencedirect.com/science/article/pii/S0378429003001953 |
[16] | DHANDA S S, MUNJAL R. Inheritance of cellular thermotolerance in bread wheat[J]. Plant Breeding, 2006, 125(6):557-564 doi: 10.1111/pbr.2006.125.issue-6 |
[17] | 耿晓丽, 张月伶, 臧新山, 等.北方冬麦区与黄淮北片优良小麦品种(系)耐热性评价[J].麦类作物学报, 2016, 36(2):172-181 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201602007 GENG X L, ZHANG Y L, ZANG X S, et al. Evaluation the thermos tolerance of the wheat (Triticum aestivum L.) cultivars and advanced lines collected from the northern China and north area of Huanghuai winter wheat regions[J]. Journal of Triticeae Crops, 2016, 36(2):172-181 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201602007 |
[18] | MAHAN J R, BURKE J J. Active management of plant canopy temperature as a tool for modifying plant metabolic activity[J]. American Journal of Plant Sciences, 2015, 6(1):53531 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4236_ajps.2015.61028 |
[19] | REYNOLDS M P, BALOTA M, DELGADO M I B, et al. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions[J]. Australian Journal of Plant Physiology, 1994, 21(6):717-730 doi: 10.1071-PP9940717/ |
[20] | 韩利明, 张勇, 彭惠茹, 等.从产量和品质性状的变化分析北方冬麦区小麦品种抗热性[J].作物学报, 2010, 36(9):1538-1546 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201009015 HAN L M, ZHANG Y, PENG H R, et al. Analysis of heat resistance for cultivars from North China Winter Wheat Region by yield and quality traits[J]. Acta Agronomica Sinica, 2010, 36(9):1538-1546 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201009015 |
[21] | 仪小梅, 孙爱清, 韩晓玉, 等.黄淮麦区小麦主推品种(系)干热风抗性鉴定[J].麦类作物学报, 2015, 35(2):274-284 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201502018 YI X M, SUN A Q, HAN X Y, et al. Identification of dry-hot wind resistance of major wheat cultivars (lines) in Huanghuai wheat region[J]. Journal of Triticeae Crops, 2015, 35(2):274-284 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201502018 |
[22] | ARNON D T. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_437905 |
[23] | 李世清, 邵明安, 李紫燕, 等.小麦籽粒灌浆特征及影响因素的研究进展[J].西北植物学报, 2003, 23(11):2031-2039 doi: 10.3321/j.issn:1000-4025.2003.11.036 LI S Q, SHAO M A, LI Z Y, et al. Review of characteristics of wheat grain filling and factors to influence it[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(11):2031-2039 doi: 10.3321/j.issn:1000-4025.2003.11.036 |
[24] | TEBALDI C, HAYHOE K, ARBLASTER J M, et al. Going to the extremes:An intercomparison of model-simulated historical and future changes in extreme events[J]. Climatic Change, 2006, 79(3/4):185-211 http://www.ingentaconnect.com/content/klu/clim/2006/00000079/F0020003/00009051 |
[25] | JIANG Z H, SONG J, LI L, et al. Extreme climate events in China:IPCC-AR4 model evaluation and projection[J]. Climatic Change, 2012, 110(1/2):385-401 doi: 10.1007/s10584-011-0090-0 |
[26] | 丁一汇, 任国玉, 石广玉, 等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展, 2006, 2(1):3-8 doi: 10.3969/j.issn.1673-1719.2006.01.001 DING Y H, REN G Y, SHI G Y, et al. National assessment report of climate change (Ⅰ):Climate change in China and its future trend[J]. Advances in Climate Change Research, 2006, 2(1):3-8 doi: 10.3969/j.issn.1673-1719.2006.01.001 |
[27] | ASSENG S, EWERT F, MARTRE P, et al. Rising temperatures reduce global wheat production[J]. Nature Climate Change, 2015, 5(2):143-147 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234098484/ |
[28] | 赵俊芳, 赵艳霞, 郭建平, 等.基于干热风危害指数的黄淮海地区冬小麦干热风灾损评估[J].生态学报, 2015, 35(16):5287-5293 http://d.old.wanfangdata.com.cn/Periodical/stxb201516002 ZHAO J F, ZHAO Y X, GUO J P, et al. Assessment of the yield loss of winter wheat caused by dry-hot wind in Huanghuaihai Plain based on the hazard index of dry-hot wind[J]. Acta Ecologica Sinica, 2015, 35(16):5287-5293 http://d.old.wanfangdata.com.cn/Periodical/stxb201516002 |
[29] | 杨绚, 汤绪, 陈葆德, 等.气候变暖背景下高温胁迫对中国小麦产量的影响[J].地理科学进展, 2013, 32(12):1772-1779 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201312006 YANG X, TANG X, CHEN B D, et al. Impacts of heat stress on wheat yield due to climatic warming in China[J]. Progress in Geography, 2013, 32(12):1772-1779 http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201312006 |
[30] | ARAUS J L, SLAFER G A, REYNOLDS M P, et al. Plant breeding and drought in C3 cereals:What should we breed for?[J]. Annals of Botany, 2002, 89:925-940 doi: 10.1093/aob/mcf049 |
[31] | 刘霞, 尹燕枰, 姜春明, 等.花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响[J].应用生态学报, 2005, 16(11):2117-2121 doi: 10.3321/j.issn:1001-9332.2005.11.021 LIU X, YIN Y P, JIANG C M, et al. Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat[J]. Chinese Journal of Applied Ecology, 2005, 16(11):2117-2121 doi: 10.3321/j.issn:1001-9332.2005.11.021 |
[32] | FAROOQ M, BRAMLEY H, PALTA J A, et al. Heat stress in wheat during reproductive and grain-filling phases[J]. Critical Reviews in Plant Sciences, 2011, 30(6):491-507 doi: 10.1080/07352689.2011.615687 |
[33] | 韩利明, 张勇, 彭惠茹, 等.从产量和品质性状的变化分析北方冬麦区小麦品种抗热性[J].作物学报, 2010, 36(9):1538-1546 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201009015 HAN L M, ZHANG Y, PENG H R, et al. Analysis of heat resistance for cultivars from north china winter wheat region by yield and quality traits[J]. Acta Agronomica Sinica, 2010, 36(9):1538-1546 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201009015 |
[34] | HAYS D B, DO J H, MASON R E, et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar[J]. Plant Science, 2007, 172(6):1113-1123 doi: 10.1016/j.plantsci.2007.03.004 |
[35] | VISWANATHAN C, KHANNA-CHOPRA R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability[J]. Journal of Agronomy and Crop Science, 2001, 186(1):1-7 doi: 10.1046/j.1439-037x.2001.00432.x |
[36] | 赵彦坤, 王秀堂, 王静, 等.热胁迫对不同小麦品种灌浆速率的影响[J].中国生态农业学报, 2016, 24(9):1239-1245 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016911&flag=1 ZHAO Y K, WANG X T, WANG J, et al. Effects of heat stress on grain-filling rate of different wheat varieties[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9):1239-1245 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016911&flag=1 |
[37] | 胡吉帮, 王晨阳, 郭天财, 等.灌浆期高温和干旱对小麦灌浆特性的影响[J].河南农业大学学报, 2008, 42(6):597-601 http://d.old.wanfangdata.com.cn/Periodical/hennannydxxb200806004 HU J B, WANG C Y, GUO T C, et al. Effects of high temperature and drought stress on grain filling characteristics in wheat during grain filling period[J]. Journal of Henan Agricultural University, 2008, 42(6):597-601 http://d.old.wanfangdata.com.cn/Periodical/hennannydxxb200806004 |
[38] | 冯素伟, 胡铁柱, 李淦, 等.不同小麦品种籽粒灌浆特性分析[J].麦类作物学报, 2009, 29(4):643-646 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200904019 FENG S W, HU T Z, LI G, et al. Analysis on grain filling characteristics of different wheat varieties[J]. Journal of Triticeae Crops, 2009, 29(4):643-646 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200904019 |
[39] | 姜雨萌, 赵风华, 刘金秋, 等.极端高温对冬小麦冠层碳同化的影响[J].中国生态农业学报, 2015, 23(10):1260-1267 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151007&flag=1 JIANG Y M, ZHAO F H, LIU J Q, et al. Effect of extreme heat on winter wheat canopy carbon assimilation[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10):1260-1267 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151007&flag=1 |
[40] | 武永胜, 薛辉, 刘洋, 等.持绿型小麦叶片衰老和叶绿素荧光特征的研究[J].干旱地区农业研究, 2010, 28(4):117-122 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201004022 WU Y S, XUE H, LIU Y, et al. Study on senescence and chlorophyll fluorescence traits of stay-green leaf in wheat[J]. Agricultural Research in the Arid Areas, 2010, 28(4):117-122 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201004022 |
[41] | 龚月桦, 林娜, 石慧清, 等.持绿型小麦冠温特性及其对低氮和高温的适应性[J].西北农林科技大学学报:自然科学版, 2016, 44(9):49-55 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201609008 GONG Y H, LIN N, SHI H Q, et al. Canopy temperature characteristics and adaptability of stay-green wheat to low nitrogen and high temperature[J]. Journal of Northwest A & F University:Natural Science Edition, 2016, 44(9):49-55 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201609008 |
[42] | 陈冬梅, 马永安, 苏玉环, 等.不同落黄型小麦品种光合器官衰老及产量对花后高温的响应[J].麦类作物学报, 2017, 37(12):1596-1603 doi: 10.7606/j.issn.1009-1041.2017.12.10 CHEN D M, MA Y A, SU Y H, et al. Response of photosynthetic organ senescence and yield of wheat with different yellowing types to heat stress after anthesis[J]. Journal of Triticeae Crops, 2017, 37(12):1596-1603 doi: 10.7606/j.issn.1009-1041.2017.12.10 |
[43] | 陈晓娜, 赵庚星, 周雪, 等.基于高光谱的小麦冠层叶绿素(SPAD值)估测模型[J].天津农业科学, 2017, 24(2):60-65 http://d.old.wanfangdata.com.cn/Periodical/tjnykx201802015 CHEN X N, ZHAO G X, ZHOU X, et al. Estimation model of wheat canopy chlorophyll content (SPAD value) based on hyperspectral technology[J]. Tianjin Agricultural Sciences, 2017, 24(2):60-65 http://d.old.wanfangdata.com.cn/Periodical/tjnykx201802015 |
[44] | 张俊华, 张佳宝, 贾科利.不同施肥条件下夏玉米光谱特征与叶绿素含量和LAI的相关性[J].西北植物学报, 2008, 28(7):1461-1467 doi: 10.3321/j.issn:1000-4025.2008.07.029 ZHANG J H, ZHANG J B, JIA K L. Correlation between summer maize spectral reflectance and leaf chlorophyll, LAI under different fertilizations[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(7):1461-1467 doi: 10.3321/j.issn:1000-4025.2008.07.029 |
[45] | 王晓飞, 李志洪, 袁家萍, 等.玉米品种冠层NDVI与叶绿素的关系[J].中国农学通报, 2010, 26(16):175-179 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201016037 WANG X F, LI Z H, YUAN J P, et al. The relationship between corn varieties canopy of NDVI and chlorophyll[J]. Chinese Agricultural Science Bulletin, 2010, 26(16):175-179 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201016037 |